#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' Created on Tue Aug 6 12:56:03 2019 @author: tanu ''' # FIXME: import dirs.py to get the basic dir paths available #======================================================================= # TASK: # # Input: # Output: #======================================================================= #%% load libraries import os, sys import pandas as pd #import numpy as np #from varname import nameof import argparse #======================================================================= #%% specify input and curr dir homedir = os.path.expanduser('~') # set working dir os.getcwd() os.chdir(homedir + '/git/LSHTM_analysis/scripts') os.getcwd() from aa_prop import get_aa_prop #======================================================================= #%% command line args arg_parser = argparse.ArgumentParser() arg_parser.add_argument('-d', '--drug', help='drug name', default = None) arg_parser.add_argument('-g', '--gene', help='gene name', default = None) arg_parser.add_argument('--datadir', help = 'Data Directory. By default, it assmumes homedir + git/Data') arg_parser.add_argument('-i', '--input_dir', help = 'Input dir containing pdb files. By default, it assmumes homedir + + input') arg_parser.add_argument('-o', '--output_dir', help = 'Output dir for results. By default, it assmes homedir + + output') arg_parser.add_argument('--debug', action ='store_true', help = 'Debug Mode') # not used atm args = arg_parser.parse_args() #%% variable assignment: input and output drug = args.drug gene = args.gene datadir = args.datadir indir = args.input_dir outdir = args.output_dir #%%======================================================================= #============== # directories #============== if not datadir: datadir = homedir + '/' + 'git/Data' if not indir: indir = datadir + '/' + drug + '/input' if not outdir: outdir = datadir + '/' + drug + '/output' #======= # input #======= #in_filename = 'merged_df3.csv' #in_filename = gene.lower() + '_complex_mcsm_norm.csv' in_filename_mcsm = gene.lower() + '_complex_mcsm_norm_SRY.csv' # gid infile_mcsm = outdir + '/' + in_filename_mcsm print('Input file: ', infile_mcsm , '\n============================================================') #======= # output #======= out_filename_aaps = gene.lower() + '_mcsm_aaps.txt' outfile_aaps = outdir + '/' + out_filename_aaps print('Output file: ', outfile_aaps , '\n============================================================') #%% end of variable assignment for input and output files #======================================================================= #%% Read input files print('Reading input file (merged file):', infile_mcsm) comb_df = pd.read_csv(infile_mcsm, sep = ',') print('Input filename: ', in_filename_mcsm , '\nPath :', outdir , '\nNo. of rows: ', len(comb_df) , '\nNo. of cols: ', len(comb_df.columns) , '\n============================================================') # column names list(comb_df.columns) #%% sanity check nrows_df = len(comb_df) ncols_add = 12 expected_cols = len(comb_df.columns) + ncols_add print('\nAdding aa properties for wt and mutant: ', ncols_add, ' columns in total' , '\n===============================================================') #%% call get_aa_prop(): get_aa_prop(df = comb_df) #%% check dim of df if len(comb_df) == nrows_df and len(comb_df.columns) == expected_cols: print('Checking dim of df: ' , '\nPASS: df dim match' , '\nno.of rows: ', len(comb_df) , '\nno. of cols: ', len(comb_df.columns)) else: print('\FAIL: dim mismatch' , 'Expected rows: ', nrows_df , '\Got: ', len(comb_df) , '\nExpected cols: ', expected_cols , '\nGot: ', len(comb_df.columns)) sys.exit('Aborting') #%% summary output sys.stdout = open(outfile_aaps, 'w') print('################################################' , '\n aa properties: ', gene , '\n################################################') print('\n-------------------' , '\nWild-type: aap 1' , '\n-------------------\n' , comb_df['wt_aap1'].value_counts() , '\n-------------------' , '\nmutant-type: aap 1' , '\n-------------------\n' , comb_df['mut_aap1'].value_counts() , '\n===================================================') print('\n-------------------' , '\nWild-type: aap 2' , '\n-------------------\n' , comb_df['wt_aap2'].value_counts() , '\n-------------------' , '\nmutant-type: aap 2' , '\n-------------------\n' , comb_df['mut_aap2'].value_counts() , '\n===================================================') print('\n-------------------' , '\nWild-type: aap taylor' , '\n-------------------\n' , comb_df['wt_aap_taylor'].value_counts() , '\n-------------------' , '\nmutant-type: taylor' , '\n-------------------\n' , comb_df['mut_aap_taylor'].value_counts() , '\n===================================================') print('\n-------------------' , '\nWild-type: aap water/kd' , '\n-------------------\n' , comb_df['wt_aap_kd'].value_counts() , '\n-------------------' , '\nmutant-type: water/kd' , '\n-------------------\n' , comb_df['mut_aap_kd'].value_counts() , '\n===================================================') print('\n-------------------' , '\nWild-type: aap polarity' , '\n-------------------\n' , comb_df['wt_aap_polarity'].value_counts() , '\n-------------------' , '\nmutant-type: polarity' , '\n-------------------\n' , comb_df['mut_aap_polarity'].value_counts() , '\n===================================================') print('\n-------------------' , '\nWild-type: aa calcprop' , '\n-------------------\n' , comb_df['wt_aa_calcprop'].value_counts() , '\n-------------------' , '\nmutant-type: aa calcprop' , '\n-------------------\n' , comb_df['mut_aa_calcprop'].value_counts() , '\n===================================================') #%% end of script #=======================================================================