#!/usr/bin/env Rscript ######################################################### # TASK: To combine struct params and meta data for plotting # Input csv files: # 1) _all_params.csv # 2) _meta_data.csv # Output: # 1) muts with opposite effects on stability # 2) large combined df including NAs for AF, OR,etc # Dim: same no. of rows as gene associated meta_data_with_AFandOR # 3) small combined df including NAs for AF, OR, etc. # Dim: same as mcsm data # 4) large combined df excluding NAs # Dim: dim(#1) - na_count_df2 # 5) small combined df excluding NAs # Dim: dim(#2) - na_count_df3 # This script is sourced from other .R scripts for plotting ######################################################### #======================================================================= # working dir and loading libraries getwd() setwd("~/git/LSHTM_analysis/scripts/plotting/") getwd() require("getopt", quietly = TRUE) # cmd parse arguments # load functions source("~/git/LSHTM_analysis/scripts/Header_TT.R") source("../functions/plotting_globals.R") source("../functions/plotting_data.R") ############################################################# # command line args #******************** # !!!FUTURE TODO!!! # Can pass additional params of output/plot dir by user. # Not strictly required for my workflow since it is optimised # to have a streamlined input/output flow without filename worries. #******************** spec = matrix(c( "drug" ,"d", 1, "character", "gene" ,"g", 1, "character", "data" ,"f", 2, "character" ), byrow = TRUE, ncol = 4) opt = getopt(spec) #FIXME: detect if script running from cmd, then set these drug = opt$drug gene = opt$gene infile = opt$data # hardcoding when not using cmd #drug = "streptomycin" #gene = "gid" if(is.null(drug)|is.null(gene)) { stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)") } ######################################################### # call functions with relevant args #*********************************** # import_dirs(): returns # datadir # indir # outdir # plotdir # dr_muts_col # other_muts_col # resistance_col #*********************************** import_dirs(drug, gene) #*********************************** # plotting_data(): returns # my_df # my_df_u # my_df_u_lig # dup_muts #*********************************** #infile = "/home/tanu/git/Data/streptomycin/output/gid_comb_stab_struc_params.csv" if (!exists("infile") && exists("gene")){ #if (!is.character(infile) && exists("gene")){ #in_filename_params = paste0(tolower(gene), "_all_params.csv") #in_filename_params = paste0(tolower(gene), "_comb_stab_struc_params.csv") # part combined for gid in_filename_params = paste0(tolower(gene), "_comb_afor.csv") # part combined for gid infile = paste0(outdir, "/", in_filename_params) cat("\nInput file not specified, assuming filename: ", infile, "\n") } # Get the DFs out of plotting_data() pd_df = plotting_data(infile) my_df = pd_df[[1]] my_df_u = pd_df[[2]] my_df_u_lig = pd_df[[3]] dup_muts = pd_df[[4]] cat(paste0("Directories imported:" , "\ndatadir:" , datadir , "\nindir:" , indir , "\noutdir:" , outdir , "\nplotdir:" , plotdir)) cat(paste0("\nVariables imported:" , "\ndrug:" , drug , "\ngene:" , gene , "\ngene match:" , gene_match , "\n")) #======================================================== #=========== # input #=========== #in_file1: output of plotting_data.R # my_df_u # infile 2: gene associated meta data #in_filename_gene_metadata = paste0(tolower(gene), "_meta_data_with_AFandOR.csv") in_filename_gene_metadata = paste0(tolower(gene), "_metadata.csv") infile_gene_metadata = paste0(outdir, "/", in_filename_gene_metadata) cat(paste0("Input infile 2:", infile_gene_metadata)) #=========== # output #=========== # other variables that you can write # primarily called by other scripts for plotting # PS combined: # 1) merged_df2 # 2) merged_df2_comp # 3) merged_df3 # 4) merged_df3_comp # LIG combined: # 5) merged_df2_lig # 6) merged_df2_comp_lig # 7) merged_df3_lig # 8) merged_df3_comp_lig #%%=============================================================== ########################### # 2: Read file: _meta data.csv ########################### cat("Reading meta data file:", infile_gene_metadata) gene_metadata <- read.csv(infile_gene_metadata , stringsAsFactors = F , header = T) cat("Dim:", dim(gene_metadata)) table(gene_metadata$mutation_info) # counting NAs in AF, OR cols # or_mychisq if (identical(sum(is.na(my_df_u$or_mychisq)) , sum(is.na(my_df_u$pval_fisher)) , sum(is.na(my_df_u$af)))){ cat("\nPASS: NA count match for OR, pvalue and AF\n") na_count = sum(is.na(my_df_u$af)) cat("\nNo. of NAs: ", sum(is.na(my_df_u$or_mychisq))) } else{ cat("\nFAIL: NA count mismatch" , "\nNA in OR: ", sum(is.na(my_df_u$or_mychisq)) , "\nNA in pvalue: ", sum(is.na(my_df_u$pval_fisher)) , "\nNA in AF:", sum(is.na(my_df_u$af))) } # or kin if (identical(sum(is.na(my_df_u$or_kin)) , sum(is.na(my_df_u$pwald_kin)) , sum(is.na(my_df_u$af_kin)))){ cat("\nPASS: NA count match for OR, pvalue and AF\n from Kinship matrix calculations") na_count = sum(is.na(my_df_u$af_kin)) cat("\nNo. of NAs: ", sum(is.na(my_df_u$or_kin))) } else{ cat("\nFAIL: NA count mismatch" , "\nNA in OR: ", sum(is.na(my_df_u$or_kin)) , "\nNA in pvalue: ", sum(is.na(my_df_u$pwald_kin)) , "\nNA in AF:", sum(is.na(my_df_u$af_kin))) } str(gene_metadata) ################################################################### # combining: PS ################################################################### # sort by position (same as my_df) head(gene_metadata$position) gene_metadata = gene_metadata[order(gene_metadata$position),] head(gene_metadata$position) #========================= # Merge 1: merged_df2 # dfs with NAs in ORs #========================= head(my_df_u$mutationinformation) head(gene_metadata$mutationinformation) # Find common columns b/w two df merging_cols = intersect(colnames(my_df_u), colnames(gene_metadata)) cat(paste0("Merging dfs with NAs: big df (1-many relationship b/w id & mut)" , "\nNo. of merging cols:", length(merging_cols) , "\nMerging columns identified:")) print(merging_cols) # using all common cols create confusion, so pick one! # merging_cols = merging_cols[[1]] merging_cols = 'mutationinformation' cat("\nLinking column being used: mutationinformation") # important checks! table(nchar(my_df_u$mutationinformation)) table(nchar(my_df_u$wild_type)) table(nchar(my_df_u$mutant_type)) table(nchar(my_df_u$position)) # all.y because x might contain non-structural positions! merged_df2 = merge(x = gene_metadata , y = my_df_u , by = merging_cols , all.y = T) cat("Dim of merged_df2: ", dim(merged_df2)) # Remove duplicate columns dup_cols = names(merged_df2)[grepl("\\.x$|\\.y$", names(merged_df2))] cat("\nNo. of duplicate cols:", length(dup_cols)) check_df_cols = merged_df2[dup_cols] identical(check_df_cols$wild_type.x, check_df_cols$wild_type.y) identical(check_df_cols$position.x, check_df_cols$position.y) identical(check_df_cols$mutant_type.x, check_df_cols$mutant_type.y) # False: because some of the ones with OR don't have mutation identical(check_df_cols$mutation.x, check_df_cols$mutation.y) cols_to_drop = names(merged_df2)[grepl("\\.y",names(merged_df2))] cat("\nNo. of cols to drop:", length(cols_to_drop)) # Drop duplicate columns merged_df2 = merged_df2[,!(names(merged_df2)%in%cols_to_drop)] # Drop the '.x' suffix in the colnames names(merged_df2)[grepl("\\.x$|\\.y$", names(merged_df2))] colnames(merged_df2) <- gsub("\\.x$", "", colnames(merged_df2)) names(merged_df2)[grepl("\\.x$|\\.y$", names(merged_df2))] head(merged_df2$position) # sanity check cat("Checking nrows in merged_df2") if(nrow(gene_metadata) == nrow(merged_df2)){ cat("PASS: nrow(merged_df2) = nrow (gene associated gene_metadata)" ,"\nExpected no. of rows: ",nrow(gene_metadata) ,"\nGot no. of rows: ", nrow(merged_df2)) } else{ cat("FAIL: nrow(merged_df2)!= nrow(gene associated gene_metadata)" , "\nExpected no. of rows after merge: ", nrow(gene_metadata) , "\nGot no. of rows: ", nrow(merged_df2) , "\nFinding discrepancy") merged_muts_u = unique(merged_df2$mutationinformation) meta_muts_u = unique(gene_metadata$mutationinformation) # find the index where it differs unique(meta_muts_u[! meta_muts_u %in% merged_muts_u]) quit() } #========================= # Merge 2: merged_df3 # dfs with NAs in ORs # # Cannot trust lineage, country from this df as the same mutation # can have many different lineages # but this should be good for the numerical corr plots #========================= # remove duplicated mutations cat("Merging dfs without NAs: small df (removing muts with no AF|OR associated)" ,"\nCannot trust lineage info from this" ,"\nlinking col: mutationinforamtion" ,"\nfilename: merged_df3") merged_df3 = merged_df2[!duplicated(merged_df2$mutationinformation),] head(merged_df3$position); tail(merged_df3$position) # should be sorted # sanity check cat("Checking nrows in merged_df3") if(nrow(my_df_u) == nrow(merged_df3)){ cat("PASS: No. of rows match with my_df" ,"\nExpected no. of rows: ", nrow(my_df_u) ,"\nGot no. of rows: ", nrow(merged_df3)) } else { cat("FAIL: No. of rows mismatch" , "\nNo. of rows my_df: ", nrow(my_df_u) , "\nNo. of rows merged_df3: ", nrow(merged_df3)) quit() } # counting NAs in AF, OR cols in merged_df3 # this is because mcsm has no AF, OR cols, # so you cannot count NAs if (identical(sum(is.na(merged_df3$or_kin)) , sum(is.na(merged_df3$pwald_kin)) , sum(is.na(merged_df3$af_kin)))){ cat("PASS: NA count match for OR, pvalue and AF\n") na_count_df3 = sum(is.na(merged_df3$af_kin)) cat("No. of NAs: ", sum(is.na(merged_df3$or_kin))) } else{ cat("FAIL: NA count mismatch" , "\nNA in OR: ", sum(is.na(merged_df3$or_kin)) , "\nNA in pvalue: ", sum(is.na(merged_df3$pwald_kin)) , "\nNA in AF:", sum(is.na(merged_df3$af_kin))) } #========================= # Merge3: merged_df2_comp # same as merge 1 but excluding NAs from ORs, etc. #========================= cat("Merging dfs without any NAs: big df (1-many relationship b/w id & mut)" ,"\nfilename: merged_df2_comp") na_count_df2 = sum(is.na(merged_df2$af)) merged_df2_comp = merged_df2[!is.na(merged_df2$af),] # sanity check: no +-1 gymnastics cat("Checking nrows in merged_df2_comp") if(nrow(merged_df2_comp) == (nrow(merged_df2) - na_count_df2)){ cat("\nPASS: No. of rows match" ,"\nDim of merged_df2_comp: " ,"\nExpected no. of rows: ", nrow(merged_df2) - na_count_df2 , "\nNo. of rows: ", nrow(merged_df2_comp) , "\nNo. of cols: ", ncol(merged_df2_comp)) }else{ cat("FAIL: No. of rows mismatch" ,"\nExpected no. of rows: ", nrow(merged_df2) - na_count_df2 ,"\nGot no. of rows: ", nrow(merged_df2_comp)) } #========================= # Merge4: merged_df3_comp # same as merge 2 but excluding NAs from ORs, etc or # remove duplicate mutation information #========================= na_count_df3 = sum(is.na(merged_df3$af)) #merged_df3_comp = merged_df3_comp[!duplicated(merged_df3_comp$mutationinformation),] # a way merged_df3_comp = merged_df3[!is.na(merged_df3$af),] # another way cat("Checking nrows in merged_df3_comp") if(nrow(merged_df3_comp) == (nrow(merged_df3) - na_count_df3)){ cat("\nPASS: No. of rows match" ,"\nDim of merged_df3_comp: " ,"\nExpected no. of rows: ", nrow(merged_df3) - na_count_df3 , "\nNo. of rows: ", nrow(merged_df3_comp) , "\nNo. of cols: ", ncol(merged_df3_comp)) }else{ cat("FAIL: No. of rows mismatch" ,"\nExpected no. of rows: ", nrow(merged_df3) - na_count_df3 ,"\nGot no. of rows: ", nrow(merged_df3_comp)) } # alternate way of deriving merged_df3_comp foo = merged_df3[!is.na(merged_df3$af),] bar = merged_df3_comp[!duplicated(merged_df3_comp$mutationinformation),] # compare dfs: foo and merged_df3_com all.equal(foo, bar) #summary(comparedf(foo, bar)) #============================================================== ##################################################################### # Combining: LIG ##################################################################### #========================= # Merges 5-8 #========================= merged_df2_lig = merged_df2[merged_df2$ligand_distance<10,] merged_df2_comp_lig = merged_df2_comp[merged_df2_comp$ligand_distance<10,] merged_df3_lig = merged_df3[merged_df3$ligand_distance<10,] merged_df3_comp_lig = merged_df3_comp[merged_df3_comp$ligand_distance<10,] # sanity check if (nrow(merged_df3_lig) == nrow(my_df_u_lig)){ print("PASS: verified merged_df3_lig") }else{ cat(paste0("FAIL: nrow mismatch for merged_df3_lig" , "\nExpected:", nrow(my_df_u_lig) , "\nGot:", nrow(merged_df3_lig))) } #============================================================== ################# # OPTIONAL: write output files in one go ################# #outvars = c(#"merged_df2", #"merged_df2_comp", #"merged_df2_lig", #"merged_df2_comp_lig", #"meregd_df3_comp" #"merged_df3_comp_lig", #"merged_df3", #"merged_df3_lig") #cat("Writing output files: " #, "\nPath:", outdir) #for (i in outvars){ #out_filename = paste0(i, ".csv") #outfile = paste0(outdir, "/", out_filename) #cat("Writing output file:" # ,"\nFilename: ", out_filename,"\n") #write.csv(get(i), outfile, row.names = FALSE) #cat("Finished writing: ", outfile # , "\nNo. of rows: ", nrow(get(i)) # , "\nNo. of cols: ", ncol(get(i)), "\n") #} # clear variables rm(foo, bar, gene_metadata , in_filename_params, infile_params, merging_cols , in_filename_gene_metadata, infile_gene_metadata) #========================================================================== # end of script ##=========================================================================