#!/usr/bin/env Rscript #source("~/git/LSHTM_analysis/config/katg.R") #source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R") #======= # output #======= outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/") outdir_stats = paste0(outdir_images,"stats/") cat("\nOutput dir for stats:", outdir_stats) ################################################################### geneL_normal = c("pnca") #geneL_na = c("gid", "rpob") geneL_na_v2 = c("gid") geneL_ppi2 = c("alr", "embb", "katg", "rpob") geneL_both = c("rpob") if (tolower(gene)%in%geneL_na_v2) { gene_colnames = c("mcsm_na_affinity", "mcsm_na_outcome") } if (tolower(gene)%in%geneL_ppi2) { gene_colnames = c("mcsm_ppi2_affinity", "mcsm_ppi2_outcome") } #from plotting_globals() LigDist_colname ppi2Dist_colname naDist_colname delta_symbol #delta_symbol = "\u0394"; delta_symbol angstroms_symbol cat("\nAffinity Distance colnames:", length(affinity_dist_colnames) , "\nThese are:", affinity_dist_colnames) #=========== # Data used #=========== df3 = merged_df3 cols_to_output = c("position" , "sensitivity" , "mutationinformation" , affinity_dist_colnames[1] , "ligand_affinity_change" , "ligand_outcome" , "mmcsm_lig" , "mmcsm_lig_outcome" , affinity_dist_colnames[2] # #, affinity_dist_colnames[3] # , "mcsm_na_affinity" # , "mcsm_na_outcome" # #, "mcsm_nca_affinity" # #, "mcsm_nca_outcome" , gene_colnames , "maf" , "or_mychisq" , "pval_fisher") cols_to_output df3_output = df3[, cols_to_output] colnames(df3_output) cat("\nSelecting columns:", length(colnames(df3_output))) #=============================================== # Add COLS and rounding: adjusted P-values + MAF #============================================== #----------------------------- # adjusted P-values #----------------------------- # add cols: p_adj_fdr and signif_fdr df3_output$p_adj_fdr = p.adjust(df3_output$pval_fisher, method = "fdr") df3_output$signif_fdr = df3_output$p_adj_fdr df3_output = dplyr::mutate(df3_output , signif_fdr = case_when(signif_fdr == 0.05 ~ "." , signif_fdr <=0.0001 ~ '****' , signif_fdr <=0.001 ~ '***' , signif_fdr <=0.01 ~ '**' , signif_fdr <0.05 ~ '*' , TRUE ~ 'ns')) # rounding df3_output$or_mychisq = round(df3_output$or_mychisq,2) df3_output$p_adj_fdr = round(df3_output$p_adj_fdr,2) head(df3_output) #---------- # MAF (%) #---------- # add col maf_percent df3_output$maf_percent = df3_output$maf*100 # rounding df3_output$maf_percent = round(df3_output$maf_percent,2) head(df3_output$af); head(df3_output$maf);head(df3_output$maf_percent) #---------- # P-value #---------- df3_output$pval_fisher = round(df3_output$pval_fisher,2) class(df3_output) head(df3_output) #################################### # Appendix: ligand affinity #################################### df_lig = df3_output[df3_output[[LigDist_colname]]