#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jun 29 19:44:06 2022 @author: tanu """ import sys, os import pandas as pd import numpy as np import re ############################################################################### homedir = os.path.expanduser("~") sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions') sys.path ############################################################################### #==================== # Import ML functions #==================== from ml_data_combined import * from MultClfs_logo_skf import * #from GetMLData import * #from SplitTTS import * skf_cv = StratifiedKFold(n_splits = 10 , shuffle = True,**rs) #logo = LeaveOneGroupOut() #%% def CMLogoSkf(combined_df , all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"] , bts_genes = ["embb", "katg", "rpob", "pnca", "gid"] , cols_to_drop = ['dst', 'dst_mode', 'gene_name'] , target_var = 'dst_mode' , gene_group = 'gene_name' , std_gene_omit = [] ): for bts_gene in bts_genes: print('\n BTS gene:', bts_gene) tr_gene_omit = std_gene_omit + [bts_gene] n_tr_genes = (len(bts_genes) - (len(std_gene_omit))) #n_total_genes = (len(bts_genes) - len(std_gene_omit)) n_total_genes = len(all_genes) training_genesL = std_gene_omit + list(set(bts_genes) - set(tr_gene_omit)) #training_genesL = [element for element in bts_genes if element not in tr_gene_omit] print('\nTotal genes: ', n_total_genes ,'\nTraining on:', n_tr_genes ,'\nTraining on genes:', training_genesL , '\nOmitted genes:', tr_gene_omit , '\nBlind test gene:', bts_gene) tts_split_type = "logoBT_" + bts_gene outFile = "/home/tanu/git/Data/ml_combined/" + str(n_tr_genes+1) + "genes_" + tts_split_type + ".csv" print(outFile) #------- # training #------ cm_training_df = combined_df[~combined_df['gene_name'].isin(tr_gene_omit)] cm_X = cm_training_df.drop(cols_to_drop, axis=1, inplace=False) #cm_y = cm_training_df.loc[:,'dst_mode'] cm_y = cm_training_df.loc[:, target_var] gene_group = cm_training_df.loc[:,'gene_name'] print('\nTraining data dim:', cm_X.shape , '\nTraining Target dim:', cm_y.shape) if all(cm_X.columns.isin(cols_to_drop) == False): print('\nChecked training df does NOT have Target var') else: sys.exit('\nFAIL: training data contains Target var') #--------------- # BTS: genes #--------------- cm_test_df = combined_df[combined_df['gene_name'].isin([bts_gene])] cm_bts_X = cm_test_df.drop(cols_to_drop, axis = 1, inplace = False) #cm_bts_y = cm_test_df.loc[:, 'dst_mode'] cm_bts_y = cm_test_df.loc[:, target_var] print('\nTraining data dim:', cm_bts_X.shape , '\nTraining Target dim:', cm_bts_y.shape) #%%:Running Multiple models on LOGO with SKF cD3_v2 = MultModelsCl_logo_skf(input_df = cm_X , target = cm_y , group = 'none' , sel_cv = skf_cv , blind_test_df = cm_bts_X , blind_test_target = cm_bts_y , tts_split_type = tts_split_type , resampling_type = 'none' # default , add_cm = True , add_yn = True , var_type = 'mixed' , run_blind_test = True , return_formatted_output = True , random_state = 42 , n_jobs = 10 ) cD3_v2.to_csv(outFile) #%% CMLogoSkf(combined_df) CMLogoSkf(combined_df, std_gene_omit=['alr'])