#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Aug 19 14:33:51 2020 @author: tanu """ #%% load packages import os,sys import subprocess import argparse import requests import re import time from bs4 import BeautifulSoup import pandas as pd from pandas.api.types import is_string_dtype from pandas.api.types import is_numeric_dtype #%%============================================================================ #streptomycin/gid_complex.pdb host_dynamut = 'http://biosig.unimelb.edu.au/dynamut' pred_dynamut_batch = '/results_prediction/161287964015' result_id = re.search( r"([0-9]+)$", pred_dynamut).group(0) batch_result_url = host_dynamut + pred_dynamut_batch mut = 'S2C' single_url = host_dynamut + '/single_results/' + str(result_id) single_result_url = host_dynamut + '/single_results/' + str(result_id) + '/' + mut print(single_result_url) #%%============================================================================ param_dict = {} result_response = requests.get(single_result_url) if result_response.status_code == 200: print('Fetching results') # extract results using the html parser soup = BeautifulSoup(result_response.text, features = 'html.parser') #web_result_raw = soup.find(id = 'predictions').get_text() ddg_dynamut = soup.find(id = 'ddg_dynamut').get_text() ddg_encom = soup.find(id = 'ddg_encom').get_text() ddg_mcsm = soup.find(id = 'ddg_mcsm').get_text() ddg_sdm = soup.find(id = 'ddg_sdm').get_text() ddg_duet = soup.find(id = 'ddg_duet').get_text() dds_encom = soup.find(id = 'dds_encom').get_text() param_dict = {"mutationinformation" : mut , "ddg_dynamut" : ddg_dynamut , "ddg_encom" : ddg_encom , "ddg_mcsm" : ddg_mcsm , "ddg_sdm" : ddg_sdm , "ddg_duet" : ddg_duet , "dds_encom" : dds_encom } results_df = pd.DataFrame.from_dict(param_dict, orient = "index").T print(results_df) #%% for loop single_url = host_dynamut + '/single_results/' + str(result_id) muts = ["S2C", "S2F"] # initilialise empty df dynamut_results_df = pd.DataFrame() for i, mut in enumerate(muts): #param_dict = {} print('Running mutation', i+1, ':', mut) snp = mut single_result_url = single_url + '/' + snp print('Getting results from:', single_result_url) result_response = requests.get(single_result_url) if result_response.status_code == 200: print('Fetching results') # extract results using the html parser soup = BeautifulSoup(result_response.text, features = 'html.parser') #web_result_raw = soup.find(id = 'predictions').get_text() ddg_dynamut = soup.find(id = 'ddg_dynamut').get_text() ddg_encom = soup.find(id = 'ddg_encom').get_text() ddg_mcsm = soup.find(id = 'ddg_mcsm').get_text() ddg_sdm = soup.find(id = 'ddg_sdm').get_text() ddg_duet = soup.find(id = 'ddg_duet').get_text() dds_encom = soup.find(id = 'dds_encom').get_text() param_dict = {"mutationinformation" : snp , "ddg_dynamut" : ddg_dynamut , "ddg_encom" : ddg_encom , "ddg_mcsm" : ddg_mcsm , "ddg_sdm" : ddg_sdm , "ddg_duet" : ddg_duet , "dds_encom" : dds_encom } results_df = pd.DataFrame.from_dict(param_dict, orient = "index").T print(results_df) dynamut_results_df = dynamut_results_df.append(results_df) print(dynamut_results_df)