getwd() setwd("~/git/LSHTM_analysis/scripts/plotting") getwd() ######################################################### # TASK: ######################################################### ######################################################################## # Installing and loading required packages and functions # ######################################################################## source("Header_TT.R") source("barplot_colour_function.R") ######################################################################## # Read file: call script for combining df for PS # ######################################################################## #????????????? # ######################################################## #%% variable assignment: input and output paths & filenames drug = "pyrazinamide" gene = "pncA" gene_match = paste0(gene,"_p.") cat(gene_match) #============= # directories #============= datadir = paste0("~/git/Data") indir = paste0(datadir, "/", drug, "/input") outdir = paste0("~/git/Data", "/", drug, "/output") #====== # input #====== #in_filename = "mcsm_complex1_normalised.csv" in_filename_params = paste0(tolower(gene), "_all_params.csv") infile_params = paste0(outdir, "/", in_filename_params) cat(paste0("Input file:", infile_params) ) #======= # output #======= subcols_bp_duet = "barplot_subcols_DUET.svg" outPlot_subcols_bp_duet = paste0(outdir, "/plots/", subcols_bp_duet) #%%=============================================================== ########################### # Read file: struct params ########################### cat("Reading struct params including mcsm:", in_filename_params) my_df = read.csv(infile_params #, stringsAsFactors = F , header = T) cat("Input dimensions:", dim(my_df)) # clear variables rm(in_filename_params, infile_params) # quick checks colnames(my_df) str(my_df) # check for duplicate mutations if ( length(unique(my_df$mutationinformation)) != length(my_df$mutationinformation)){ cat(paste0("CAUTION:", " Duplicate mutations identified" , "\nExtracting these...")) dup_muts = my_df[duplicated(my_df$mutationinformation),] dup_muts_nu = length(unique(dup_muts$mutationinformation)) cat(paste0("\nDim of duplicate mutation df:", nrow(dup_muts) , "\nNo. of unique duplicate mutations:", dup_muts_nu , "\n\nExtracting df with unique mutations only")) my_df_u = my_df[!duplicated(my_df$mutationinformation),] }else{ cat(paste0("No duplicate mutations detected")) my_df_u = my_df } upos = unique(my_df_u$position) cat("Dim of clean df:"); cat(dim(my_df_u)) cat("\nNo. of unique mutational positions:"); cat(length(upos)) ######################################################################## # end of data extraction and cleaning for plots # ######################################################################## #=================== # Data for plots #=================== # REASSIGNMENT as necessary df = my_df_u rm(my_df) # sanity checks upos = unique(df$position) # should be a factor is.factor(my_df$duet_outcome) #[1] TRUE table(df$duet_outcome) # should be -1 and 1 min(df$duet_scaled) max(df$duet_scaled) tapply(df$duet_scaled, df$duet_outcome, min) tapply(df$duet_scaled, df$duet_outcome, max) #****************** # generate plot #****************** #========================== # Barplot with scores (unordered) # corresponds to duet_outcome # Stacked Barplot with colours: duet_outcome @ position coloured by # stability scores. This is a barplot where each bar corresponds # to a SNP and is coloured by its corresponding DUET stability value. # Normalised values (range between -1 and 1 ) to aid visualisation # NOTE: since barplot plots discrete values, colour = score, so number of # colours will be equal to the no. of unique normalised scores # rather than a continuous scale # will require generating the colour scale separately. #============================ # My colour FUNCTION: based on group and subgroup # in my case; # df = df # group = duet_outcome # subgroup = normalised score i.e duet_scaled # check unique values in normalised data u = unique(df$duet_scaled) #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Run this section if rounding is to be used n = 3 df$duet_scaledR = round(df$duet_scaled, n) ur = unique(df$duet_scaledR) # create an extra column called group which contains the "gp name and score" # so colours can be generated for each unique values in this column #my_grp = df$duet_scaledR # rounding my_grp = df$duet_scaled # no rounding #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% df$group <- paste0(df$duet_outcome, "_", my_grp, sep = "") # Call the function to create the palette based on the group defined above colours <- ColourPalleteMulti(df, "duet_outcome", "my_grp") print(paste0("Colour palette generated for: ", length(colours), " colours")) my_title = "Protein stability (DUET)" # axis label size my_xaxls = 13 my_yaxls = 15 # axes text size my_xaxts = 15 my_yaxts = 15 #****************** # generate plot: NO axis colours # no ordering of x-axis #****************** # plot name and location print(paste0("plot will be in:", outdir)) bp_subcols_duet = "barplot_coloured_PS.svg" plot_bp_subcols_duet = paste0(outdir, "/plots/", bp_subcols_duet) print(paste0("plot name:", plot_bp_subcols_duet)) svg(plot_bp_subcols_duet, width = 26, height = 4) g = ggplot(df, aes(factor(position, ordered = T))) outPlot = g + geom_bar(aes(fill = group), colour = "grey") + scale_fill_manual( values = colours , guide = "none") + theme( axis.text.x = element_text(size = my_xaxls , angle = 90 , hjust = 1 , vjust = 0.4) , axis.text.y = element_text(size = my_yaxls , angle = 0 , hjust = 1 , vjust = 0) , axis.title.x = element_text(size = my_xaxts) , axis.title.y = element_text(size = my_yaxts ) ) + labs(title = my_title , x = "position" , y = "Frequency") print(outPlot) dev.off() # for sanity and good practice rm(df) #======================= end of plot # axis colours labels # https://stackoverflow.com/questions/38862303/customize-ggplot2-axis-labels-with-different-colors # https://stackoverflow.com/questions/56543485/plot-coloured-boxes-around-axis-label