#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' Created on Tue Aug 6 12:56:03 2019 @author: tanu ''' #============================================================================= # Task: Residue depth (rd) processing to generate a df with residue_depth(rd) # values # FIXME # Input: '.tsv' i.e residue depth txt file (output from .zip file manually # downloaded from the website). # This should be integrated into the pipeline # Output: .csv with 3 cols i.e position, rd_values & 3-letter wt aa code(caps) #============================================================================= #%% load packages import sys, os import argparse import pandas as pd #============================================================================= #%% specify input and curr dir homedir = os.path.expanduser('~') # set working dir os.getcwd() os.chdir(homedir + '/git/LSHTM_analysis/meta_data_analysis') os.getcwd() #======================================================================= #%% command line args arg_parser = argparse.ArgumentParser() #arg_parser.add_argument('-d', '--drug', help='drug name', default = 'pyrazinamide') #arg_parser.add_argument('-g', '--gene', help='gene name', default = 'pncA') # case sensitive arg_parser.add_argument('-d', '--drug', help='drug name', default = 'TESTDRUG') arg_parser.add_argument('-g', '--gene', help='gene name (case sensitive)', default = 'testGene') # case sensitive args = arg_parser.parse_args() #======================================================================= #%% variable assignment: input and output #drug = 'pyrazinamide' #gene = 'pncA' drug = args.drug gene = args.gene gene_match = gene + '_p.' #========== # data dir #========== datadir = homedir + '/' + 'git/Data' #======= # input #======= outdir = datadir + '/' + drug + '/' + 'output' in_filename = '3pl1_rd.tsv' infile = outdir + '/' + in_filename print('Input filename:', in_filename , '\nInput path:', outdir , '\n=============================================================') #======= # output #======= outdir = datadir + '/' + drug + '/' + 'output' out_filename = gene.lower() + '_rd.csv' outfile = outdir + '/' + out_filename print('Output filename:', out_filename , '\nOutput path:', outdir , '\n=============================================================') #%% end of variable assignment for input and output files #======================================================================= #%% rd values from _rd.tsv values def rd_to_csv(inputtsv, outputrdcsv): """ Calculate kd (hydropathy values) from input fasta file @param inputtsv: tsv file downloaded from {INSERT LINK} @type inputtsv: string @param outputrdsv: csv file with rd values @type outfile: string @return: none, writes rd values df as csv """ #======================== # read downloaded tsv file #======================== #%% Read input file rd_data = pd.read_csv(inputtsv, sep = '\t') print('Reading input file:', inputtsv , '\nNo. of rows:', len(rd_data) , '\nNo. of cols:', len(rd_data.columns)) print('Column names:', rd_data.columns , '\n===============================================================') #======================== # creating position col #======================== # Extracting residue number from index and assigning # the values to a column [position]. Then convert the position col to numeric. rd_data['position'] = rd_data.index.str.extract('([0-9]+)').values # converting position to numeric rd_data['position'] = pd.to_numeric(rd_data['position']) rd_data['position'].dtype print('Extracted residue num from index and assigned as a column:' , '\ncolumn name: position' , '\ntotal no. of cols now:', len(rd_data.columns) , '\n=============================================================') #======================== # Renaming amino-acid # and all-atom cols #======================== print('Renaming columns:' , '\ncolname==> # chain:residue: wt_3letter_caps' , '\nYES... the column name *actually* contains a # ..!' , '\ncolname==> all-atom: rd_values' , '\n=============================================================') rd_data.rename(columns = {'# chain:residue':'wt_3letter_caps', 'all-atom':'rd_values'}, inplace = True) print('Column names:', rd_data.columns) #======================== # extracting df with the # desired columns #======================== print('Extracting relevant columns for writing df as csv') rd_df = rd_data[['position','rd_values','wt_3letter_caps']] if len(rd_df) == len(rd_data): print('PASS: extracted df has expected no. of rows' ,'\nExtracted df dim:' ,'\nNo. of rows:', len(rd_df) ,'\nNo. of cols:', len(rd_df.columns)) else: print('FAIL: no. of rows mimatch' , '\nExpected no. of rows:', len(rd_data) , '\nGot no. of rows:', len(rd_df) , '\n=====================================================') #=============== # writing file #=============== print('Writing file:' , '\nFilename:', outputrdcsv # , '\nPath:', outdir # , '\nExpected no. of rows:', len(rd_df) # , '\nExpected no. of cols:', len(rd_df.columns) , '\n=========================================================') rd_df.to_csv(outputrdcsv, header = True, index = False) #%% end of function #======================================================================= #%% call function #rd_to_csv(infile, outfile) #======================================================================= def main(): print('residue depth using the following params\n' , in_filename , '\noutfile:', out_filename) rd_to_csv(infile, outfile) print('Finished Writing file:' , '\nFilename:', out_filename , '\nPath:', outdir , '\n=============================================================') if __name__ == '__main__': main() #%% end of script #=======================================================================