######################################################### # TASK: To calculate Allele Frequency and # Odds Ratio from master data # and add the calculated params to meta_data extracted from # data_extraction.py ######################################################### getwd() setwd('~/git/LSHTM_analysis/meta_data_analysis') getwd() #%% variable assignment: input and output paths & filenames drug = 'pyrazinamide' gene = 'pncA' gene_match = paste0(gene,'_p.') cat(gene_match) #=========== # input #=========== # infile1: Raw data #indir = 'git/Data/pyrazinamide/input/original' indir = paste0('~/git/Data') in_filename = 'original_tanushree_data_v2.csv' infile = paste0(indir, '/', in_filename) cat(paste0('Reading infile1: raw data', ' ', infile) ) # infile2: gene associated meta data file to extract valid snps and add calcs to. # This is outfile3 from data_extraction.py indir_metadata = paste0('~/git/Data', '/', drug, '/', 'output') in_filename_metadata = 'pnca_metadata.csv' infile_metadata = paste0(indir_metadata, '/', in_filename_metadata) cat(paste0('Reading infile2: gene associated metadata:', infile_metadata)) #=========== # output #=========== # outdir = 'git/Data/pyrazinamide/output' outdir = paste0('~/git/Data', '/', drug, '/', 'output') out_filename = paste0(tolower(gene),'_', 'meta_data_with_AFandOR.csv') outfile = paste0(outdir, '/', out_filename) cat(paste0('Output file with full path:', outfile)) #%% end of variable assignment for input and output files ######################################################### # 1: Read master/raw data stored in Data/ ######################################################### raw_data_all = read.csv(infile, stringsAsFactors = F) raw_data = raw_data_all[,c("id" , "pyrazinamide" , "dr_mutations_pyrazinamide" , "other_mutations_pyrazinamide")] rm(raw_data_all) rm(indir, in_filename, infile) #=========== # 1a: exclude na #=========== raw_data = raw_data[!is.na(raw_data$pyrazinamide),] total_samples = length(unique(raw_data$id)) cat(paste0('Total samples without NA in', ' ', drug, 'is:', total_samples)) # sanity check: should be true is.numeric(total_samples) #=========== # 1b: combine the two mutation columns #=========== raw_data$all_mutations_pyrazinamide = paste(raw_data$dr_mutations_pyrazinamide , raw_data$other_mutations_pyrazinamide) head(raw_data$all_mutations_pyrazinamide) #=========== # 1c: create yet another column that contains all the mutations but in lower case #=========== raw_data$all_muts_pnca = tolower(raw_data$all_mutations_pyrazinamide) # sanity checks #table(grepl("pnca_p",raw_data$all_muts_pnca)) cat(paste0('converting gene match:', gene_match, ' ', 'to lowercase')) gene_match = tolower(gene_match) table(grepl(gene_match,raw_data$all_muts_pnca)) # sanity check: should be TRUE #sum(table(grepl("pnca_p",raw_data$all_muts_pnca))) == total_samples sum(table(grepl(gene_match,raw_data$all_muts_pnca))) == total_samples # set up variables: can be used for logistic regression as well i = "pnca_p.ala134gly" # has a NA, should NOT exist table(grepl(i,raw_data$all_muts_pnca)) i = "pnca_p.trp68gly" table(grepl(i,raw_data$all_muts_pnca)) mut = grepl(i,raw_data$all_muts_pnca) dst = raw_data$pyrazinamide table(mut, dst) #chisq.test(table(mut,dst)) #fisher.test(table(mut, dst)) #table(mut) ######################################################### # 2: Read valid snps for which OR # can be calculated (infile_comp_snps.csv) ######################################################### cat(paste0('Reading metadata infile:', infile_metadata)) pnca_metadata = read.csv(infile_metadata # , file.choose() , stringsAsFactors = F , header = T) # clear variables rm(indir, in_filename, infile) rm(indir_metadata, in_filename_metadata, infile_metadata) # count na in pyrazinamide column tot_pza_na = sum(is.na(pnca_metadata$pyrazinamide)) expected_rows = nrow(pnca_metadata) - tot_pza_na # drop na from the pyrazinamide colum pnca_snps_or = pnca_metadata[!is.na(pnca_metadata$pyrazinamide),] # sanity check if(nrow(pnca_snps_or) == expected_rows){ cat('PASS: no. of rows match with expected_rows') } else{ cat('FAIL: nrows mismatch.') } # extract unique snps to iterate over for AF and OR calcs pnca_snps_unique = unique(pnca_snps_or$mutation) cat(paste0('Total no. of distinct comp snps to perform OR calcs: ', length(pnca_snps_unique))) # Define OR function x = as.numeric(mut) y = dst or = function(x,y){ tab = as.matrix(table(x,y)) a = tab[2,2] if (a==0){ a<-0.5} b = tab[2,1] if (b==0){ b<-0.5} c = tab[1,2] if (c==0){ c<-0.5} d = tab[1,1] if (d==0){ d<-0.5} (a/b)/(c/d) } dst = raw_data$pyrazinamide ors = sapply(pnca_snps_unique,function(m){ mut = grepl(m,raw_data$all_muts_pnca) or(mut,dst) }) ors pvals = sapply(pnca_snps_unique,function(m){ mut = grepl(m,raw_data$all_muts_pnca) fisher.test(mut,dst)$p.value }) pvals afs = sapply(pnca_snps_unique,function(m){ mut = grepl(m,raw_data$all_muts_pnca) mean(mut) }) afs # check ..hmmm afs['pnca_p.trp68gly'] afs['pnca_p.gln10pro'] afs['pnca_p.leu4ser'] plot(density(log(ors))) plot(-log10(pvals)) hist(log(ors) , breaks = 100 ) # sanity check if (table(names(ors) == names(pvals)) & table(names(ors) == names(afs)) & table(names(pvals) == names(afs)) == length(pnca_snps_unique)){ cat('PASS: names of ors, pvals and afs match: proceed with combining into a single df') } else{ cat('FAIL: names of ors, pvals and afs mismatch') } # combine ors, pvals and afs cat('Combining calculated params into a df: ors, pvals and afs') comb_AF_and_OR = data.frame(ors, pvals, afs) cat('No. of rows in comb_AF_and_OR: ', nrow(comb_AF_and_OR) , '\nNo. of cols in comb_AF_and_OR: ', ncol(comb_AF_and_OR)) cat('Rownames == mutation: ', head(rownames(comb_AF_and_OR))) # add rownames of comb_AF_and_OR as an extra column 'mutation' to allow merging based on this column comb_AF_and_OR$mutation = rownames(comb_AF_and_OR) # sanity check if (table(rownames(comb_AF_and_OR) == comb_AF_and_OR$mutation)){ cat('PASS: rownames and mutaion col values match') }else{ cat('FAIL: rownames and mutation col values mismatch') } ######################################################### # 3: Merge meta data file + calculated num params ######################################################### df1 = pnca_metadata df2 = comb_AF_and_OR cat('checking commom col of the two dfs before merging:' ,'\ndf1:', head(df1$mutation) , '\ndf2:', head(df2$mutation)) cat(paste0('merging two dfs: ' ,'\ndf1 (big df i.e. meta data) nrows: ', nrow(df1) ,'\ndf2 (small df i.e af, or, pval) nrows: ', nrow(df2) ,'\nexpected rows in merged df: ', nrow(df1) ,'\nexpected cols in merged_df: ', (ncol(df1) + ncol(df2) - 1))) merged_df = merge(df1 # big file , df2 # small (afor file) , by = "mutation" , all.x = T) # because you want all the entries of the meta data # sanity check if(ncol(merged_df) == (ncol(df1) + ncol(df2) - 1)){ cat(paste0('PASS: no. of cols is as expected: ', ncol(merged_df))) } else{ cat('FAIL: no.of cols mistmatch') } # quick check i = "pnca_p.ala134gly" # has all NAs in pyrazinamide, should be NA in ors, etc. merged_df[merged_df$mutation == i,] # count na in each column na_count = sapply(merged_df, function(y) sum(length(which(is.na(y))))); na_count # check last three cols: should be NA if ( identical(na_count[[length(na_count)]], na_count[[length(na_count)-1]], na_count[[length(na_count)-2]])){ cat('PASS: No. of NAs for OR, AF and Pvals are equal as expected', '\nNo. of NA: ', na_count[[length(na_count)]]) } else { cat('FAIL: No. of NAs for OR, AF and Pvals mismatch') } # reassign custom colnames cat('Assigning custom colnames for the calculated params...') colnames(merged_df)[colnames(merged_df)== "ors"] <- "OR" colnames(merged_df)[colnames(merged_df)== "pvals"] <- "pvalue" colnames(merged_df)[colnames(merged_df)== "afs"] <- "AF" colnames(merged_df) # add 3 more cols: log OR, neglog pvalue and AF_percent cols merged_df$logor = log(merged_df$OR) is.numeric(merged_df$logor) merged_df$neglog10pvalue = -log10(merged_df$pvalue) is.numeric(merged_df$neglog10pvalue) merged_df$AF_percent = merged_df$AF*100 is.numeric(merged_df$AF_percent) # check AFs #i = 'pnca_p.trp68gly' i = 'pnca_p.gln10pro' #i = 'pnca_p.leu4ser' merged_df[merged_df$mutation == i,] # FIXME: harcoding (beware!), NOT FATAL though! ncol_added = 3 cat(paste0('Added', ' ', ncol_added, ' more cols to merged_df:' , '\ncols added: logor, neglog10pvalue and AF_percent:' , '\nno. of cols in merged_df now: ', ncol(merged_df))) #%% write file out: pnca_meta_data_with_AFandOR #********************************************* cat(paste0('writing output file: ' , '\nFilename: ', out_filename , '\nPath:', outdir)) write.csv(merged_df, outfile , row.names = F) cat(paste0('Finished writing:' , out_filename , '\nNo. of rows: ', nrow(merged_df) , '\nNo. of cols: ', ncol(merged_df))) #************************************************ cat('======================================================================') rm(out_filename) cat('End of script: calculated AF, OR, pvalues and saved file') # End of script #%% # sanity check: Count NA in these four cols. # However these need to be numeric else these # will be misleading when counting NAs (i.e retrun 0) #is.numeric(meta_with_afor$OR) na_var = c('AF', 'OR', 'pvalue', 'logor', 'neglog10pvalue') # loop through these vars and check if these are numeric. # if not, then convert to numeric check_all = NULL for (i in na_var){ # cat(i) check0 = is.numeric(meta_with_afor[,i]) if (check0) { check_all = c(check0, check_all) cat('These are all numeric cols') } else{ cat('First converting to numeric') check0 = as.numeric(meta_with_afor[,i]) check_all = c(check0, check_all) } } # count na now that the respective cols are numeric na_count = sapply(meta_with_afor, function(y) sum(length(which(is.na(y))))); na_count str(na_count) # extract how many NAs: # should be all TRUE # should be a single number since # all the cols should have 'equal' and 'same' no. of NAs # compare if the No of 'NA' are the same for all these cols na_len = NULL for (i in na_var){ temp = na_count[[i]] na_len = c(na_len, temp) } cat('Checking how many NAs and if these are identical for the selected cols:') my_nrows = NULL for ( i in 1: (length(na_len)-1) ){ # cat(compare(na_len[i]), na_len[i+1]) c = compare(na_len[i], na_len[i+1]) if ( c$result ) { cat('PASS: No. of NAa in selected cols are identical') my_nrows = na_len[i] } else { cat('FAIL: No. of NAa in selected cols mismatch') } } cat('No. of NAs in each of the selected cols: ', my_nrows) # yet more sanity checks: cat('Check whether the ', my_nrows, 'indices are indeed the same') #which(is.na(meta_with_afor$OR)) # initialise an empty df with nrows as extracted above na_count_df = data.frame(matrix(vector(mode = 'numeric' # , length = length(na_var) ) , nrow = my_nrows # , ncol = length(na_var) )) # populate the df with the indices of the cols that are NA for (i in na_var){ cat(i) na_i = which(is.na(meta_with_afor[i])) na_count_df = cbind(na_count_df, na_i) colnames(na_count_df)[which(na_var == i)] <- i } # Now compare these indices to ensure these are the same check2 = NULL for ( i in 1: ( length(na_count_df)-1 ) ) { # cat(na_count_df[i] == na_count_df[i+1]) check_all = identical(na_count_df[[i]], na_count_df[[i+1]]) check2 = c(check_all, check2) if ( all(check2) ) { cat('PASS: The indices for AF, OR, etc are all the same\n') } else { cat ('FAIL: Please check indices which are NA') } }