getwd() setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting") getwd() ######################################################################## # Installing and loading required packages # ######################################################################## source("../Header_TT.R") #source("barplot_colour_function.R") #require(data.table) ######################################################################## # Read file: call script for combining df for Lig # ######################################################################## source("../combining_two_df_lig.R") #---------------------- PAY ATTENTION # the above changes the working dir #[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts" #---------------------- PAY ATTENTION #========================== # This will return: # df with NA: # merged_df2 # merged_df3 # df without NA: # merged_df2_comp # merged_df3_comp #=========================== ########################### # Data for plots # you need merged_df2 or merged_df2_comp # since this is one-many relationship # i.e the same SNP can belong to multiple lineages ########################### # uncomment as necessary #<<<<<<<<<<<<<<<<<<<<<<<<< # REASSIGNMENT my_df = merged_df2 #my_df = merged_df2_comp #<<<<<<<<<<<<<<<<<<<<<<<<< # delete variables not required rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp) # quick checks colnames(my_df) str(my_df) # Ensure correct data type in columns to plot: need to be factor is.factor(my_df$lineage) my_df$lineage = as.factor(my_df$lineage) is.factor(my_df$lineage) table(my_df$mutation_info) ############################# # Extra sanity check: # for mcsm_lig ONLY # Dis_lig_Ang should be <10 ############################# if (max(my_df$Dis_lig_Ang) < 10){ print ("Sanity check passed: lig data is <10Ang") }else{ print ("Error: data should be filtered to be within 10Ang") } ######################################################################## # end of data extraction and cleaning for plots # ######################################################################## #========================== # Data for plot: assign as # necessary #=========================== # uncomment as necessary #!!!!!!!!!!!!!!!!!!!!!!! # REASSIGNMENT #================== # data for ALL muts #================== plot_df = my_df my_plot_name = 'lineage_dist_PS.svg' #my_plot_name = 'lineage_dist_PS_comp.svg' #======================= # data for dr_muts ONLY #======================= #plot_df = my_df_dr #my_plot_name = 'lineage_dist_dr_PS.svg' #my_plot_name = 'lineage_dist_dr_PS_comp.svg' #!!!!!!!!!!!!!!!!!!!!!!! #========================== # Plot: Lineage Distribution # x = mcsm_values, y = dist # fill = stability #============================ #=================== # Data for plots #=================== # subset only lineages1-4 sel_lineages = c("lineage1" , "lineage2" , "lineage3" , "lineage4") # uncomment as necessary df_lin = subset(my_df, subset = lineage %in% sel_lineages ) #2037 35 # refactor df_lin$lineage = factor(df_lin$lineage) table(df_lin$lineage) #{RESULT: No of samples within lineage} #lineage1 lineage2 lineage3 lineage4 #78 961 195 803 # when merged_df2_comp is used #lineage1 lineage2 lineage3 lineage4 #77 955 194 770 length(unique(df_lin$Mutationinformation)) #{Result: No. of unique mutations the 4 lineages contribute to} # sanity checks r1 = 2:5 # when merged_df2 used: because there is missing lineages if(sum(table(my_df$lineage)[r1]) == nrow(df_lin)) { print ("sanity check passed: numbers match") } else{ print("Error!: check your numbers") } #!!!!!!!!!!!!!!!!!!!!!!!!! # REASSIGNMENT df <- df_lin #!!!!!!!!!!!!!!!!!!!!!!!!! rm(df_lin) #****************** # generate distribution plot of lineages #****************** # basic: could improve this! library(plotly) library(ggridges) my_labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4') names(my_labels) = c('lineage1', 'lineage2', 'lineage3', 'lineage4') g <- ggplot(df, aes(x = ratioPredAff)) + geom_density(aes(fill = Lig_outcome) , alpha = 0.5) + facet_wrap( ~ lineage , scales = "free" , labeller = labeller(lineage = my_labels) ) + coord_cartesian(xlim = c(-1, 1) # , ylim = c(0, 6) # , clip = "off" ) ggtitle("Kernel Density estimates of Ligand affinity by lineage") ggplotly(g) # 2 : ggridges (good!) my_ats = 15 # axis text size my_als = 20 # axis label size my_labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4') names(my_labels) = c('lineage1', 'lineage2', 'lineage3', 'lineage4') # set output dir for plots getwd() setwd("~/git/Data/pyrazinamide/output/plots") getwd() # check plot name my_plot_name svg(my_plot_name) printFile = ggplot( df, aes(x = ratioPredAff , y = Lig_outcome) ) + geom_density_ridges_gradient( aes(fill = ..x..) , scale = 3 , size = 0.3 ) + facet_wrap( ~lineage , scales = "free" # , switch = 'x' , labeller = labeller(lineage = my_labels) ) + coord_cartesian( xlim = c(-1, 1) # , ylim = c(0, 6) # , clip = "off" ) + scale_fill_gradientn( colours = c("#f8766d", "white", "#00bfc4") , name = "Ligand Affinity" ) + theme( axis.text.x = element_text( size = my_ats , angle = 90 , hjust = 1 , vjust = 0.4) # , axis.text.y = element_text( size = my_ats # , angle = 0 # , hjust = 1 # , vjust = 0) , axis.text.y = element_blank() , axis.title.x = element_blank() , axis.title.y = element_blank() , axis.ticks.y = element_blank() , plot.title = element_blank() , strip.text = element_text(size = my_als) , legend.text = element_text(size = 10) , legend.title = element_text(size = my_als) # , legend.position = c(0.3, 0.8) # , legend.key.height = unit(1, 'mm') ) print(printFile) dev.off() #=================================================== # COMPARING DISTRIBUTIONS head(df$lineage) df$lineage = as.character(df$lineage) lin1 = df[df$lineage == "lineage1",]$ratioPredAff lin2 = df[df$lineage == "lineage2",]$ratioPredAff lin3 = df[df$lineage == "lineage3",]$ratioPredAff lin4 = df[df$lineage == "lineage4",]$ratioPredAff # ks test ks.test(lin1,lin2) ks.test(lin1,lin3) ks.test(lin1,lin4) ks.test(lin2,lin3) ks.test(lin2,lin4) ks.test(lin3,lin4)