#!/usr/bin/env Rscript #source("~/git/LSHTM_analysis/config/alr.R") source("~/git/LSHTM_analysis/config/embb.R") #source("~/git/LSHTM_analysis/config/katg.R") #source("~/git/LSHTM_analysis/config/gid.R") #source("~/git/LSHTM_analysis/config/pnca.R") #source("~/git/LSHTM_analysis/config/rpob.R") # get plottting dfs source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R") source("~/git/LSHTM_analysis/scripts/plotting/plotting_colnames.R") #======= # output #======= outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/") ################################################################### # FIXME: ADD distance to NA when SP replies geneL_normal = c("pnca") geneL_na = c("gid", "rpob") geneL_ppi2 = c("alr", "embb", "katg", "rpob") # LigDist_colname # from globals used # ppi2Dist_colname #from globals used # naDist_colname #from globals used common_cols = c("mutationinformation" , "X5uhc_position" , "X5uhc_offset" , "position" , "dst_mode" , "mutation_info_labels" , "sensitivity", dist_columns ) #=================== # stability cols #=================== raw_cols_stability = c("duet_stability_change" , "deepddg" , "ddg_dynamut2" , "ddg_foldx" , "avg_stability") scaled_cols_stability = c("duet_scaled" , "deepddg_scaled" , "ddg_dynamut2_scaled" , "foldx_scaled" , "foldx_scaled_signC" # needed to get avg stability , "avg_stability_scaled") outcome_cols_stability = c("duet_outcome" , "deepddg_outcome" , "ddg_dynamut2_outcome" , "foldx_outcome" , "avg_stability_outcome") all_stability_cols = c(raw_cols_stability , scaled_cols_stability , outcome_cols_stability) #=================== # affinity cols #=================== raw_cols_affinity = c("ligand_affinity_change" , "mmcsm_lig" , "mcsm_ppi2_affinity" , "mcsm_na_affinity" , "avg_lig_affinity") scaled_cols_affinity = c("affinity_scaled" , "mmcsm_lig_scaled" , "mcsm_ppi2_scaled" , "mcsm_na_scaled" , "avg_lig_affinity_scaled") outcome_cols_affinity = c( "ligand_outcome" , "mmcsm_lig_outcome" , "mcsm_ppi2_outcome" , "mcsm_na_outcome" , "avg_lig_affinity_outcome") all_affinity_cols = c(raw_cols_affinity , scaled_cols_affinity , outcome_cols_affinity) #=================== # conservation cols #=================== raw_cols_conservation = c("consurf_score" , "snap2_score" , "provean_score") scaled_cols_conservation = c("consurf_scaled" , "snap2_scaled" , "provean_scaled") outcome_cols_conservation = c("provean_outcome" , "snap2_outcome" , "consurf_colour_rev" , "consurf_outcome") all_conserv_cols = c(raw_cols_conservation , scaled_cols_conservation , outcome_cols_conservation) ######################################## categ_cols_to_factor = grep( "_outcome|_info", colnames(merged_df3) ) fact_cols = colnames(merged_df3)[categ_cols_to_factor] if (any(lapply(merged_df3[, fact_cols], class) == "character")){ cat("\nChanging", length(categ_cols_to_factor), "cols to factor") merged_df3[, fact_cols] <- lapply(merged_df3[, fact_cols], as.factor) if (all(lapply(merged_df3[, fact_cols], class) == "factor")){ cat("\nSuccessful: cols changed to factor") } }else{ cat("\nRequested cols aready factors") } cat("\ncols changed to factor are:\n", colnames(merged_df3)[categ_cols_to_factor] ) #################################### # merged_df3: NECESSARY pre-processing ################################### #df3 = merged_df3 plot_cols = c("mutationinformation", "mutation_info_labels", "position", "dst_mode" , all_cols) all_cols = c(common_cols , all_stability_cols , all_affinity_cols , all_conserv_cols)