library(tidyverse) #install.packages("ggforce") library("ggforce") #install.packages("gginference") library(gginference) library(ggpubr) library(svglite) ################################################## #%% read data # DOME: read data using gene and drug combination # gene must be lowercase # tolower(gene) ################################################# gene="pncA" drug="pyrazinamide" lineage_filename=paste0(tolower(gene),"_merged_df2.csv") lineage_data_path="~/git/Data/pyrazinamide/output" df = read.csv(paste0(lineage_data_path,"/",lineage_filename)) #df2 = read.csv("/home/tanu/git/Data/pyrazinamide/output/pnca_merged_df3.csv") foo = as.data.frame(colnames(df)) cols_to_subset = c('mutationinformation' , 'snp_frequency' , 'pos_count' , 'position' , 'lineage' , 'lineage_multimode' , 'dst' , 'dst_multimode' #, 'dst_multimode_all' , 'dst_mode') my_df = df[ ,cols_to_subset] #df2 = df2[ ,cols_to_subset] r24p_embb = df_embb[df_embb$mutationinformation == "R24P",] tm = c("A102P", "M1T") test = my_df[my_df$mutationinformation%in%tm,] #test$dst2[is.na(test$dst)] <-test$dst_mode test$dst2 = ifelse(is.na(test$dst), test$dst_mode, test$dst) sum(table(test$dst2)) == nrow(test) # Now we need to make a column that fill na in dst with value of dst_mode my_df$dst2 = ifelse(is.na(my_df$dst), my_df$dst_mode, my_df$dst) #%% create sensitivity column ~ dst_mode my_df$sensitivity = ifelse(my_df$dst2 == 1, "R", "S") table(my_df$dst2) if ( table(my_df$sensitivity)[2] == table(my_df$dst2)[1] && table(my_df$sensitivity)[1] == table(my_df$dst2)[2] ){ cat("\nProceeding with lineage resistance plots") }else{ stop("FAIL: could not verify dst2 and sensitivity numbers") } #%% # select only L1-L4 and LBOV sel_lineages1 = c("LBOV", "") my_df2 = my_df[!my_df$lineage%in%sel_lineages1,] table(my_df2$lineage) sel_lineages2 = c("L1", "L2", "L3", "L4") my_df2 = my_df2[my_df2$lineage%in%sel_lineages2,] table(my_df2$lineage) sum(table(my_df2$lineage)) == nrow(my_df2) table(my_df2$lineage) # %% # str(my_df2) # my_df2$lineage = as.factor(my_df2$lineage) # my_df2$sensitivity = as.factor(my_df2$sensitivity) #%% get only muts which belong to > 1 lineage and have different sensitivity classifications muts = unique(my_df2$mutationinformation) #----------------------------------------------- # step1 : get muts with more than one lineage #----------------------------------------------- lin_muts = NULL for (i in muts) { print (i) s_mut = my_df2[my_df2$mutationinformation == i,] s_tab = table(s_mut$lineage, s_mut$sensitivity) #print(s_tab) if (dim(s_tab)[1] > 1 && dim(s_tab)[2] > 1){ lin_muts = c(lin_muts, i) } } cat("\nGot:", length(lin_muts), "mutations belonging to >1 lineage with differing drug sensitivities") #----------------------------------------------- # step 2: subset these muts for plotting #----------------------------------------------- plot_df = my_df2[my_df2$mutationinformation%in%lin_muts,] cat("\nnrow of plot_df:", nrow(plot_df)) #----------------------------------------------- # step 3: Add p-value #----------------------------------------------- plot_df$pval = NULL for (i in lin_muts) { #print (i) s_mut = plot_df[plot_df$mutationinformation == i,] #print(s_mut) s_tab = table(s_mut$lineage, s_mut$sensitivity) #print(s_tab) #ft_pvalue_i = round(fisher.test(s_tab)$p.value, 3) ft_pvalue_i = fisher.test(s_tab)$p.value #print(ft_pvalue_i) plot_df$pval[plot_df$mutationinformation == i] <- ft_pvalue_i #print(s_tab) } plot_df$pvalR = round(plot_df$pval, 3) plot_df$pvalRF = ifelse(plot_df$pvalR == 0.05, paste0("p=",plot_df$pvalR, "."), plot_df$pvalR ) plot_df$pvalRF = ifelse(plot_df$pvalR <= 0.05, paste0("p=",plot_df$pvalR, "*"), plot_df$pvalRF ) plot_df$pvalRF = ifelse(plot_df$pvalR <= 0.01, paste0("p=",plot_df$pvalR, "**"), plot_df$pvalRF ) plot_df$pvalRF = ifelse(plot_df$pvalR == 0, 'p<0.001, ***', plot_df$pvalRF) plot_df$pvalRF = ifelse(plot_df$pvalR > 0.05, paste0("p=",plot_df$pvalR), plot_df$pvalRF) # format p value # TODO: add case statement for correct pvalue formatting #plot_df$pvalF = ifelse(plot_df$pval <= 0.0001, paste0(round(plot_df$pval, 3), "**** "), plot_df$pval ) # plot_df$pvalF = ifelse(plot_df$pval <= 0.001, paste0(round(plot_df$pval, 3), "*** "), plot_df$pval ) # plot_df$pvalF = ifelse(plot_df$pval <= 0.01, paste0(round(plot_df$pval, 3), "** "), plot_df$pval ) # plot_df$pvalF = ifelse(plot_df$pval < 0.05, paste0(round(plot_df$pval, 3), "* "), plot_df$pval ) # plot_df$pvalF = ifelse(plot_df$pval == 0.05, paste0(round(plot_df$pval, 3), ". "), plot_df$pval ) #================================================ # Plot attempt 1 [no stats]: WORKS beeautifully #================================================ # ggplot(plot_df, aes(x = lineage # , fill = factor(sensitivity))) + # geom_bar(stat = 'count')+ # #coord_cartesian(ylim = c(0, ypos_label)) + # facet_wrap(~mutationinformation # , scales = 'free_y') ######################################################### #================================================ # Plot attempt 2 [with stats]:data wrangling to # get ypos_label to place stats with geom_label #================================================ # # small data set # tm3 = c("F94L", "A102P", "L4S", "L4W") # tm2 = c("L4W") # # # Calculate stats: example # test2 = plot_df[plot_df$mutationinformation%in%tm2,] # table(test2$mutationinformation, test2$lineage, test2$sensitivity) # tm_tab = table(test2$lineage, test2$sensitivity) # tm_tab # Get the ypos for plotting the label for p-value lin_muts_tb = plot_df %>% group_by(mutationinformation) %>% count(lineage) %>% mutate(ypos_label = max(n)) head(lin_muts_tb); class(lin_muts_tb) lin_muts_df = as.data.frame(lin_muts_tb) class(lin_muts_df) intersect(names(plot_df), names(lin_muts_df)) select_cols = c("mutationinformation", "ypos_label") lin_muts_df2 = lin_muts_df[, select_cols] names(lin_muts_df2) ; head(lin_muts_df2) # remove duplicates before merging lin_muts_df2U = lin_muts_df2[!duplicated(lin_muts_df2),] class(lin_muts_df2); class(plot_df); class(lin_muts_df2U) lin_muts_dfM = merge(plot_df, lin_muts_df2U, by = "mutationinformation", all.y = T) if (nrow(lin_muts_dfM) == nrow(plot_df) ){ cat("\nPASS: plot_df now has ypos for label" , "\nGenerating plot_df2 with sensitivity as factor\n") str(lin_muts_dfM) lin_muts_dfM$sensitivity = as.factor(lin_muts_dfM$sensitivity) plot_df2 = lin_muts_dfM }else{ stop("\nSomething went wrong. ypos_label could not be generated") } #================================================ # Plot: with stats (plot_df2) # TODO: #1) DONE: Add gene name from variable as plot title. #2) DONE: Add: facet_wrap_paginate () to allow graphs to span over multiple pages #3) Add *: Extend yaxis for each plot to allow geom_label to have space (or see # if this self resolving with facet_wrap_paginate()) #================================================ plot_pages = round(length(lin_muts)/25) p_title = gene res = 144 # SVG dots-per-inch sapply(1:plot_pages, function(page){ print(paste0("Plotting page:", page)) svglite(paste0("/tmp/output-",page,".svg"), width=2048/res, height=1534/res) # old-school square 4:3 CRT shape 1.3:1 print( ggplot(plot_df2, aes(x = lineage , fill = sensitivity)) + geom_bar(stat = 'count') + facet_wrap_paginate(~mutationinformation , scales = 'free_y' , ncol = 5 , nrow = 5 , page = page) + theme(legend.position = "top" , plot.title = element_text(hjust = 0.5, size=20) , strip.text = element_text(size=14) , axis.text.x = element_text(size=14) , axis.text.y = element_text(size=14) , axis.title.y = element_text(size=14) , legend.title = element_blank() , axis.title.x = element_blank() )+ labs(title = paste0(p_title, ": sensitivity by lineage") , y = 'Sample Count' ) + #geom_text(aes(label = p.value, x = 0.5, y = 5)) geom_blank(aes(y = ypos_label+1.25)) + geom_label(aes(label = pvalRF, x = 2.5, ypos_label+0.75), fill="white") ) dev.off() } ) #geom_text(aes(label = paste0("p=",pvalF), x = 2.5, ypos_label+1))# + #geom_segment(aes(x = 1, y = ypos_label+0.5, xend = 4, yend = ypos_label+0.5)) #geom_hline(data = lin_muts_dfM, aes(yintercept=ypos_label+0.5)) #geom_bracket(data=lin_muts_dfM, aes(xmin = 1, xmax = 4, y.position = ypos_label+0.5, label=''))