#!/usr/bin/env Rscript ######################################################### # TASK: formatting data that will be used for various plots # useful links #https://stackoverflow.com/questions/38851592/r-append-column-in-a-dataframe-with-frequency-count-based-on-two-columns ######################################################### # working dir and loading libraries #getwd() #setwd("~/git/LSHTM_analysis/scripts/plotting") #getwd() library(data.table) library(dplyr) #========================================================= plotting_data <- function(infile_params) { cat(paste0("Input file 1:", infile_params, '\n') ) # These globals are created by import_dirs() cat('columns based on variables:\n' , drug , '\n' , dr_muts_col , '\n' , other_muts_col , "\n" , resistance_col , '\n===============================================================') #%%=============================================================== ########################### # Read file: struct params ########################### #cat("Reading struct params including mcsm:", in_filename_params) my_df = read.csv(infile_params, header = T) cat("\nInput dimensions:", dim(my_df)) ########################### # add foldx outcome category # and foldx scaled values # This will enable to always have these variables available # when calling for plots ########################### #------------------------------ # adding foldx scaled values # scale data b/w -1 and 1 #------------------------------ n = which(colnames(my_df) == "ddg"); n my_min = min(my_df[,n]); my_min my_max = max(my_df[,n]); my_max my_df$foldx_scaled = ifelse(my_df[,n] < 0 , my_df[,n]/abs(my_min) , my_df[,n]/my_max) # sanity check my_min = min(my_df$foldx_scaled); my_min my_max = max(my_df$foldx_scaled); my_max if (my_min == -1 && my_max == 1){ cat("\nPASS: foldx ddg successfully scaled b/w -1 and 1" , "\nProceeding with assigning foldx outcome category") }else{ cat("\nFAIL: could not scale foldx ddg values" , "Aborting!") } #------------------------------ # adding foldx outcome category # ddg<0 = "Stabilising" (-ve) #------------------------------ c1 = table(my_df$ddg < 0) my_df$foldx_outcome = ifelse(my_df$ddg < 0, "Stabilising", "Destabilising") c2 = table(my_df$ddg < 0) if ( all(c1 == c2) ){ cat("\nPASS: foldx outcome successfully created") }else{ cat("\nFAIL: foldx outcome could not be created. Aborting!") exit() } ########################### # extract unique mutation entries ########################### # check for duplicate mutations if ( length(unique(my_df$mutationinformation)) != length(my_df$mutationinformation)){ cat(paste0("\nCAUTION:", " Duplicate mutations identified" , "\nExtracting these...")) dup_muts = my_df[duplicated(my_df$mutationinformation),] dup_muts_nu = length(unique(dup_muts$mutationinformation)) cat(paste0("\nDim of duplicate mutation df:", nrow(dup_muts) , "\nNo. of unique duplicate mutations:", dup_muts_nu , "\n\nExtracting df with unique mutations only")) my_df_u = my_df[!duplicated(my_df$mutationinformation),] }else{ cat(paste0("\nNo duplicate mutations detected")) my_df_u = my_df } upos = unique(my_df_u$position) cat("\nDim of clean df:"); cat(dim(my_df_u)) cat("\nNo. of unique mutational positions:"); cat(length(upos), "\n") ########################### # extract mutations <10Angstroms and symbols ########################### table(my_df_u$ligand_distance