#source("~/git/LSHTM_analysis/config/embb.R") #source("~/git/LSHTM_analysis/scripts/plotting/plotting_colnames.R") #source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R") my_gg_pairs=function(plot_df, plot_title , tt_args_size = 2.5 , gp_args_size = 2.5){ ggpairs(plot_df, columns = 1:(ncol(plot_df)-1), upper = list( continuous = wrap('cor', # ggally_cor() method = "spearman", use = "pairwise.complete.obs", title="ρ", digits=2, justify_labels = "centre", #title_args=c(colour="black"), title_args=c(size=tt_args_size),#2.5 group_args=c(size=gp_args_size)#2.5 ) ), lower = list( continuous = wrap("points", alpha = 0.7, size=0.125), combo = wrap("dot", alpha = 0.7, size=0.125) ), aes(colour = factor(ifelse(dst_mode==0, "S", "R") ), alpha = 0.5), title=plot_title) + scale_colour_manual(values = c("red", "blue")) + scale_fill_manual(values = c("red", "blue")) #+ # theme(text = element_text(size=7, # face="bold")) } DistCutOff = 10 ########################################################################### geneL_normal = c("pnca") geneL_na = c("gid", "rpob") geneL_ppi2 = c("alr", "embb", "katg", "rpob") merged_df3 = as.data.frame(merged_df3) corr_plotdf = corr_data_extract(merged_df3 , gene = gene , drug = drug , extract_scaled_cols = F) aff_dist_cols = colnames(corr_plotdf)[grep("Dist", colnames(corr_plotdf))] static_cols = c("Log10(MAF)") #, "Log10(OR)") ############################################################ #============================================= # Creating masked df for affinity data #============================================= corr_affinity_df = corr_plotdf #---------------------- # Mask affinity columns #----------------------- corr_affinity_df[corr_affinity_df["Lig-Dist"]>DistCutOff,"mCSM-lig"]=0 corr_affinity_df[corr_affinity_df["Lig-Dist"]>DistCutOff,"mmCSM-lig"]=0 if (tolower(gene)%in%geneL_ppi2){ corr_affinity_df[corr_affinity_df["PPI-Dist"]>DistCutOff,"mCSM-PPI2"]=0 } # if (tolower(gene)%in%geneL_na){ # corr_affinity_df[corr_affinity_df["NA-Dist"]>DistCutOff,"mCSM-NA"]=0 # } # count 0 #res <- colSums(corr_affinity_df==0)/nrow(corr_affinity_df)*100 unmasked_vals <- nrow(corr_affinity_df) - colSums(corr_affinity_df==0) unmasked_vals ########################################################## #================ # Stability #================ corr_ps_colnames = c(static_cols , "DUET" , "FoldX" , "DeepDDG" , "Dynamut2" , aff_dist_cols , "dst_mode") corr_df_ps = corr_plotdf[, corr_ps_colnames] # Plot #1 plot_corr_df_ps = my_gg_pairs(corr_df_ps, plot_title="Stability features") ########################################################## #================ # Conservation #================ corr_conservation_cols = c( static_cols , "ConSurf" , "SNAP2" , "PROVEAN" , aff_dist_cols , "dst_mode" ) corr_df_cons = corr_plotdf[, corr_conservation_cols] # Plot #2 plot_corr_df_cons = my_gg_pairs(corr_df_cons, plot_title="Conservation features") ########################################################## #================ # Affinity: lig, ppi and na as applicable #================ #corr_df_lig = corr_plotdf[corr_plotdf["Lig-Dist"]