#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' Created on Tue Aug 6 12:56:03 2019 @author: tanu ''' # FIXME: import dirs.py to get the basic dir paths available #======================================================================= # TASK: calculate how many mutations result in # electrostatic changes wrt wt # Input: mCSM-normalised file or any file containing one-letter aa code # of wt and mut # Note: this can be easily modified into 3-letter code # TODO: turn to a function # Output: mut_elec_changes_results.txt #======================================================================= #%% load libraries import os, sys import pandas as pd #import numpy as np #from varname import nameof import argparse #======================================================================= #%% specify input and curr dir homedir = os.path.expanduser('~') # set working dir os.getcwd() os.chdir(homedir + '/git/LSHTM_analysis/scripts') os.getcwd() from reference_dict import oneletter_aa_dict #======================================================================= #%% command line args arg_parser = argparse.ArgumentParser() arg_parser.add_argument('-d', '--drug', help='drug name', default = None) arg_parser.add_argument('-g', '--gene', help='gene name', default = None) arg_parser.add_argument('--datadir', help = 'Data Directory. By default, it assmumes homedir + git/Data') arg_parser.add_argument('-i', '--input_dir', help = 'Input dir containing pdb files. By default, it assmumes homedir + + input') arg_parser.add_argument('-o', '--output_dir', help = 'Output dir for results. By default, it assmes homedir + + output') arg_parser.add_argument('--debug', action ='store_true', help = 'Debug Mode') # not used atm args = arg_parser.parse_args() #%% variable assignment: input and output drug = args.drug gene = args.gene datadir = args.datadir indir = args.input_dir outdir = args.output_dir #%%======================================================================= #============== # directories #============== if not datadir: datadir = homedir + '/' + 'git/Data' if not indir: indir = datadir + '/' + drug + '/input' if not outdir: outdir = datadir + '/' + drug + '/output' #======= # input #======= #in_filename = 'merged_df3.csv' #in_filename = gene.lower() + '_complex_mcsm_norm.csv' in_filename = gene.lower() + '_complex_mcsm_norm_SRY.csv' # gid infile_merged_df3 = outdir + '/' + in_filename print('Input file: ', infile_merged_df3 , '\n============================================================') #======= # output #======= out_filename = gene.lower() + '_mut_elec_changes.txt' outfile_elec_changes = outdir + '/' + out_filename print('Output file: ', outfile_elec_changes , '\n============================================================') #%% end of variable assignment for input and output files #======================================================================= #%% Read input files print('Reading input file (merged file):', infile_merged_df3) comb_df = pd.read_csv(infile_merged_df3, sep = ',') print('Input filename: ', in_filename , '\nPath :', outdir , '\nNo. of rows: ', len(comb_df) , '\nNo. of cols: ', len(comb_df.columns) , '\n============================================================') # column names list(comb_df.columns) # clear variables del(in_filename, infile_merged_df3) #%% #---------------------------------------------------------------- # add aa properties considering df has columns: # 'wild_type', 'mutant_type' separately as single letter aa code #---------------------------------------------------------------- lookup_dict = dict() for k, v in oneletter_aa_dict.items(): lookup_dict[k] = v['aa_calcprop'] #print(lookup_dict) comb_df['wt_calcprop'] = comb_df['wild_type'].map(lookup_dict) comb_df['mut_calcprop'] = comb_df['mutant_type'].map(lookup_dict) #%% subset unique mutations df = comb_df.drop_duplicates(['mutationinformation'], keep = 'first') total_muts = df['mutationinformation'].nunique() #df.Mutationinformation.count() print('Total mutations associated with structure: ', total_muts , '\n===============================================================') #%% combine aa_calcprop cols so that you can count the changes as value_counts # check if all muts have been categorised print('Checking if all muts have been categorised: ') if df['wt_calcprop'].isna().sum() == 0 & df['mut_calcprop'].isna().sum(): print('PASS: No. NA detected. All muts have aa prop associated' , '\n===============================================================') else: print('FAIL: NAs detected. Some muts remain unclassified' , '\n===============================================================') sys.exit() df['wt_calcprop'].head() df['mut_calcprop'].head() print('Combining wt_calcprop and mut_calcprop...') #df['aa_calcprop_combined'] = df['wt_calcprop']+ '->' + df['mut_calcprop'] df['aa_calcprop_combined'] = df.wt_calcprop.str.cat(df.mut_calcprop, sep = '->') df['aa_calcprop_combined'].head() mut_categ = df["aa_calcprop_combined"].unique() print('Total no. of aa_calc properties: ', len(mut_categ)) print('Categories are: ', mut_categ) # Counting no. of muts in each mut categ # way1: count values within each combinaton df.groupby('aa_calcprop_combined').size() #df.groupby('aa_calcprop_combined').count() # way2: count values within each combinaton df['aa_calcprop_combined'].value_counts() # comment: the two ways should be identical # groupby result order is similar to pivot table order, # I prefer the value_counts look # assign to variable: count values within each combinaton all_prop = df['aa_calcprop_combined'].value_counts() # convert to a df from Series ap_df = pd.DataFrame({'aa_calcprop': all_prop.index, 'mut_count': all_prop.values}) # subset df to contain only the changes in prop all_prop_change = ap_df[ap_df['aa_calcprop'].isin(['neg->neg','non-polar->non-polar','polar->polar', 'pos->pos']) == False] elec_count = all_prop_change.mut_count.sum() print('Total no.of muts with elec changes: ', elec_count) # calculate percentage of electrostatic changes elec_changes = (elec_count/total_muts) * 100 print('\n===============================================================' , '\nResults for electrostatic changes from nsSNPs for', gene,':' , '\n\nTotal no. of mutations:', total_muts , '\nMutations with electrostatic changes:', elec_count , '\nPercentage(%) of electrostatic changes:', elec_changes , '\n===============================================================') # check no change muts no_change_muts = ap_df[ap_df['aa_calcprop'].isin(['neg->neg','non-polar->non-polar','polar->polar', 'pos->pos']) == True] no_change_muts.mut_count.sum() if no_change_muts.mut_count.sum() + elec_count == total_muts: print('\nPASS: numbers cross checked' , '\nWriting output file:', outfile_elec_changes) else: print('\nFAIL: numbers mismatch') sys.exit() #%% output from console #sys.stdout = open(file, 'w') sys.stdout = open(outfile_elec_changes, 'w') print('################################################' , '\nResults for gene:', gene , '\n################################################' , '\n\n======================' , '\nUnchanged muts:' , '\n=====================\n' , no_change_muts , '\n=============================\n' , 'Muts with changed properties:' , '\n============================\n' , all_prop_change , '\n=====================================================') print('Total no. of mutations: ', total_muts , '\nTotal no. of mutions with electrostatic changes:', elec_count , '\nCorresponding (%):', elec_changes , '\nTotal no. of changed muts: ', all_prop_change.mut_count.sum() , '\nTotal no. of unchanged muts: ', no_change_muts.mut_count.sum() , '\n=======================================================') #%% end of script #=======================================================================