#!/usr/bin/env Rscript ######################################################### # TASK: producing boxplots for dr and other muts ######################################################### #======================================================================= # working dir and loading libraries getwd() setwd("~/git/LSHTM_analysis/scripts/plotting") getwd() #source("Header_TT.R") library(ggplot2) library(data.table) library(dplyr) source("combining_dfs_plotting.R") rm(merged_df2, merged_df2_comp, merged_df2_lig, merged_df2_comp_lig , merged_df3_comp, merged_df3_comp_lig , my_df_u, my_df_u_lig) cols_to_select = c("mutation", "mutationinformation" , "wild_type", "position", "mutant_type" , "mutation_info") merged_df3_short = merged_df3[, cols_to_select] # write merged_df3 to generate structural figure write.csv(merged_df3_short, "merged_df3_short.csv") #======================================================================== #%%%%%%%%%%%%%%%%%%% # REASSIGNMENT: PS #%%%%%%%%%%%%%%%%%%%% df_ps = merged_df3 #============================ # adding foldx scaled values # scale data b/w -1 and 1 #============================ n = which(colnames(df_ps) == "ddg"); n my_min = min(df_ps[,n]); my_min my_max = max(df_ps[,n]); my_max df_ps$foldx_scaled = ifelse(df_ps[,n] < 0 , df_ps[,n]/abs(my_min) , df_ps[,n]/my_max) # sanity check my_min = min(df_ps$foldx_scaled); my_min my_max = max(df_ps$foldx_scaled); my_max if (my_min == -1 && my_max == 1){ cat("PASS: foldx ddg successfully scaled b/w -1 and 1" , "\nProceeding with assigning foldx outcome category") }else{ cat("FAIL: could not scale foldx ddg values" , "Aborting!") } #================================ # adding foldx outcome category # ddg<0 = "Stabilising" (-ve) #================================= c1 = table(df_ps$ddg < 0) df_ps$foldx_outcome = ifelse(df_ps$ddg < 0, "Stabilising", "Destabilising") c2 = table(df_ps$ddg < 0) if ( all(c1 == c2) ){ cat("PASS: foldx outcome successfully created") }else{ cat("FAIL: foldx outcome could not be created. Aborting!") exit() } # name tidying df_ps$mutation_info = as.factor(df_ps$mutation_info) df_ps$duet_outcome = as.factor(df_ps$duet_outcome) df_ps$foldx_outcome = as.factor(df_ps$foldx_outcome) df_ps$ligand_outcome = as.factor(df_ps$ligand_outcome) # check table(df_ps$mutation_info) # further checks to make sure dr and other muts are indeed unique dr_muts = df_ps[df_ps$mutation_info == dr_muts_col,] dr_muts_names = unique(dr_muts$mutation) other_muts = df_ps[df_ps$mutation_info == other_muts_col,] other_muts_names = unique(other_muts$mutation) if ( table(dr_muts_names%in%other_muts_names)[[1]] == length(dr_muts_names) && table(other_muts_names%in%dr_muts_names)[[1]] == length(other_muts_names) ){ cat("PASS: dr and other muts are indeed unique") }else{ cat("FAIL: dr adn others muts are NOT unique!") quit() } #%%%%%%%%%%%%%%%%%%% # REASSIGNMENT: LIG #%%%%%%%%%%%%%%%%%%%% df_lig = merged_df3_lig # name tidying df_lig$mutation_info = as.factor(df_lig$mutation_info) df_lig$duet_outcome = as.factor(df_lig$duet_outcome) #df_lig$ligand_outcome = as.factor(df_lig$ligand_outcome) # check table(df_lig$mutation_info) #======================================================================== #=========== # Data: ps #=========== # keep similar dtypes cols together cols_to_select_ps = c("mutationinformation", "mutation", "position", "mutation_info" , "duet_outcome" , "duet_scaled" , "ligand_distance" , "asa" , "rsa" , "rd_values" , "kd_values") df_wf_ps = df_ps[, cols_to_select_ps] pivot_cols_ps = cols_to_select_ps[1:5]; pivot_cols_ps expected_rows_lf_ps = nrow(df_wf_ps) * (length(df_wf_ps) - length(pivot_cols_ps)) expected_rows_lf_ps # LF data: duet df_lf_ps = gather(df_wf_ps, param_type, param_value, duet_scaled:kd_values, factor_key=TRUE) if (nrow(df_lf_ps) == expected_rows_lf_ps){ cat("PASS: long format data created for duet") }else{ cat("FAIL: long format data could not be created for duet") exit() } str(df_wf_ps) str(df_lf_ps) # assign pretty labels: param_type levels(df_lf_ps$param_type); table(df_lf_ps$param_type) ligand_dist_colname = paste0("Distance to ligand (", angstroms_symbol, ")") ligand_dist_colname duet_stability_name = paste0(delta_symbol, delta_symbol, "G") duet_stability_name #levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="duet_scaled"] <- "Stability" levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="duet_scaled"] <- duet_stability_name #levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="ligand_distance"] <- "Ligand Distance" levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="ligand_distance"] <- ligand_dist_colname levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="asa"] <- "ASA" levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="rsa"] <- "RSA" levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="rd_values"] <- "RD" levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="kd_values"] <- "KD" # check levels(df_lf_ps$param_type); table(df_lf_ps$param_type) # assign pretty labels: mutation_info levels(df_lf_ps$mutation_info); table(df_lf_ps$mutation_info) sum(table(df_lf_ps$mutation_info)) == nrow(df_lf_ps) levels(df_lf_ps$mutation_info)[levels(df_lf_ps$mutation_info)==dr_muts_col] <- "DM" levels(df_lf_ps$mutation_info)[levels(df_lf_ps$mutation_info)==other_muts_col] <- "OM" # check levels(df_lf_ps$mutation_info); table(df_lf_ps$mutation_info) ############################################################################ #=========== # LF data: LIG #=========== # keep similar dtypes cols together cols_to_select_lig = c("mutationinformation", "mutation", "position", "mutation_info" , "ligand_outcome" , "affinity_scaled" #, "ligand_distance" , "asa" , "rsa" , "rd_values" , "kd_values") df_wf_lig = df_lig[, cols_to_select_lig] pivot_cols_lig = cols_to_select_lig[1:5]; pivot_cols_lig expected_rows_lf_lig = nrow(df_wf_lig) * (length(df_wf_lig) - length(pivot_cols_lig)) expected_rows_lf_lig # LF data: foldx df_lf_lig = gather(df_wf_lig, param_type, param_value, affinity_scaled:kd_values, factor_key=TRUE) if (nrow(df_lf_lig) == expected_rows_lf_lig){ cat("PASS: long format data created for foldx") }else{ cat("FAIL: long format data could not be created for foldx") exit() } # assign pretty labels: param_type levels(df_lf_lig$param_type); table(df_lf_lig$param_type) levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="affinity_scaled"] <- "Ligand Affinity" #levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="ligand_distance"] <- "Ligand Distance" levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="asa"] <- "ASA" levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="rsa"] <- "RSA" levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="rd_values"] <- "RD" levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="kd_values"] <- "KD" #check levels(df_lf_lig$param_type); table(df_lf_lig$param_type) # assign pretty labels: mutation_info levels(df_lf_lig$mutation_info); table(df_lf_lig$mutation_info) sum(table(df_lf_lig$mutation_info)) == nrow(df_lf_lig) levels(df_lf_lig$mutation_info)[levels(df_lf_lig$mutation_info)==dr_muts_col] <- "DM" levels(df_lf_lig$mutation_info)[levels(df_lf_lig$mutation_info)==other_muts_col] <- "OM" # check levels(df_lf_lig$mutation_info); table(df_lf_lig$mutation_info) ############################################################################# #=========== # Data: foldx #=========== # keep similar dtypes cols together cols_to_select_foldx = c("mutationinformation", "mutation", "position", "mutation_info" , "foldx_outcome" , "foldx_scaled") #, "ligand_distance" #, "asa" #, "rsa" #, "rd_values" #, "kd_values") df_wf_foldx = df_ps[, cols_to_select_foldx] pivot_cols_foldx = cols_to_select_foldx[1:5]; pivot_cols_foldx expected_rows_lf_foldx = nrow(df_wf_foldx) * (length(df_wf_foldx) - length(pivot_cols_foldx)) expected_rows_lf_foldx # LF data: foldx df_lf_foldx = gather(df_wf_foldx, param_type, param_value, foldx_scaled, factor_key=TRUE) if (nrow(df_lf_foldx) == expected_rows_lf_foldx){ cat("PASS: long format data created for foldx") }else{ cat("FAIL: long format data could not be created for foldx") exit() } foldx_stability_name = paste0(delta_symbol, delta_symbol, "G") foldx_stability_name # assign pretty labels: param type levels(df_lf_foldx$param_type); table(df_lf_foldx$param_type) #levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="foldx_scaled"] <- "Stability" levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="foldx_scaled"] <- foldx_stability_name #levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="ligand_distance"] <- "Ligand Distance" #levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="asa"] <- "ASA" #levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="rsa"] <- "RSA" #levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="rd_values"] <- "RD" #levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="kd_values"] <- "KD" # check levels(df_lf_foldx$param_type); table(df_lf_foldx$param_type) # assign pretty labels: mutation_info levels(df_lf_foldx$mutation_info); table(df_lf_foldx$mutation_info) sum(table(df_lf_foldx$mutation_info)) == nrow(df_lf_foldx) levels(df_lf_foldx$mutation_info)[levels(df_lf_foldx$mutation_info)==dr_muts_col] <- "DM" levels(df_lf_foldx$mutation_info)[levels(df_lf_foldx$mutation_info)==other_muts_col] <- "OM" # check levels(df_lf_foldx$mutation_info); table(df_lf_foldx$mutation_info) ############################################################################ # clear excess variables rm(cols_to_select_ps, cols_to_select_foldx, cols_to_select_lig , pivot_cols_ps, pivot_cols_foldx, pivot_cols_lig , expected_rows_lf_ps, expected_rows_lf_foldx, expected_rows_lf_lig , my_max, my_min, na_count, na_count_df2, na_count_df3, dup_muts_nu , c1, c2, n)