#source("~/git/LSHTM_analysis/config/pnca.R") #source("~/git/LSHTM_analysis/config/alr.R") #source("~/git/LSHTM_analysis/config/gid.R") #source("~/git/LSHTM_analysis/config/embb.R") #source("~/git/LSHTM_analysis/config/katg.R") #source("~/git/LSHTM_analysis/config/rpob.R") source("/home/tanu/git/LSHTM_analysis/my_header.R") ######################################################### # TASK: Generate averaged stability values # across all stability tools # for a given structure ######################################################### #======= # output #======= outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene)) outfile_mean_ens_st_aff = paste0(outdir_images, "/", tolower(gene) , "_mean_ens_stability.csv") print(paste0("Output file:", outfile_mean_ens_st_aff)) #%%=============================================================== #============= # Input #============= df3_filename = paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv") df3 = read.csv(df3_filename) length(df3$mutationinformation) # mut_info checks table(df3$mutation_info) table(df3$mutation_info_orig) table(df3$mutation_info_labels_orig) # used in plots and analyses table(df3$mutation_info_labels) # different, and matches dst_mode table(df3$dst_mode) # create column based on dst mode with different colname table(is.na(df3$dst)) table(is.na(df3$dst_mode)) #=============== # Create column: sensitivity mapped to dst_mode #=============== df3$sensitivity = ifelse(df3$dst_mode == 1, "R", "S") table(df3$sensitivity) length(unique((df3$mutationinformation))) all_colnames = as.data.frame(colnames(df3)) common_cols = c("mutationinformation" , "position" , "dst_mode" #, "mutation_info_labels" , "sensitivity" , "ligand_distance") all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)] scaled_cols = c("duet_scaled" , "duet_stability_change" , "deepddg_scaled" , "deepddg" , "ddg_dynamut2_scaled" , "ddg_dynamut2" , "foldx_scaled" , "ddg_foldx" , "affinity_scaled" , "ligand_affinity_change" , "mmcsm_lig_scaled" , "mmcsm_lig" , "mcsm_ppi2_scaled" , "mcsm_ppi2_affinity" , "mcsm_na_scaled" , "mcsm_na_affinity" #, "consurf_scaled" , "consurf_score" #, "snap2_scaled" , "snap2_score" #, "provean_scaled" , "provean_score" ) all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)] outcome_cols_aff = c("duet_outcome" , "deepddg_outcome" , "ddg_dynamut2_outcome" , "foldx_outcome" #, "ddg_foldx", "foldx_scaled" , "ligand_outcome" , "mmcsm_lig_outcome" , "mcsm_ppi2_outcome" , "mcsm_na_outcome" # consurf outcome doesn't exist #,"provean_outcome" #,"snap2_outcome" ) cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols, scaled_cols,outcome_cols)] cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols, outcome_cols)] ############################################################## ##################### # Ensemble stability ##################### # extract outcome cols and map numeric values to the categories # Destabilising == 0, and stabilising == 1, so rescaling can let -1 be destabilising df3_plot = df3[, cols_to_extract] # assign numeric values to outcome df3_plot[, outcome_cols] <- sapply(df3_plot[, outcome_cols] , function(x){ifelse(x == "Destabilising", 0, 1)}) table(df3$duet_outcome) table(df3_plot$duet_outcome) #===================================== # Stability (4 cols): average the scores # across predictors ==> average by # position ==> scale b/w -1 and 1 # column to average: ens_stability #===================================== cols_to_average = which(colnames(df3_plot)%in%outcome_cols) # ensemble average across predictors df3_plot$ens_stability = rowMeans(df3_plot[,cols_to_average]) head(df3_plot$position); head(df3_plot$mutationinformation) head(df3_plot$ens_stability) table(df3_plot$ens_stability) # ensemble average of predictors by position mean_ens_stability_by_position <- df3_plot %>% dplyr::group_by(position) %>% dplyr::summarize(avg_ens_stability = mean(ens_stability)) # REscale b/w -1 and 1 #en_stab_min = min(mean_ens_stability_by_position['avg_ens_stability']) #en_stab_max = max(mean_ens_stability_by_position['avg_ens_stability']) # scale the average stability value between -1 and 1 # mean_ens_by_position['averaged_stability3_scaled'] = lapply(mean_ens_by_position['averaged_stability3'] # , function(x) ifelse(x < 0, x/abs(en3_min), x/en3_max)) mean_ens_stability_by_position['avg_ens_stability_scaled'] = lapply(mean_ens_stability_by_position['avg_ens_stability'] , function(x) { scales::rescale(x, to = c(-1,1) #, from = c(en_stab_min,en_stab_max)) , from = c(0,1)) }) cat(paste0('Average stability scores:\n' , head(mean_ens_stability_by_position['avg_ens_stability']) , '\n---------------------------------------------------------------' , '\nAverage stability scaled scores:\n' , head(mean_ens_stability_by_position['avg_ens_stability_scaled']))) # convert to a data frame mean_ens_stability_by_position = as.data.frame(mean_ens_stability_by_position) #FIXME: sanity checks # TODO: predetermine the bounds # l_bound_ens = min(mean_ens_stability_by_position['avg_ens_stability_scaled']) # u_bound_ens = max(mean_ens_stability_by_position['avg_ens_stability_scaled']) # # if ( (l_bound_ens == -1) && (u_bound_ens == 1) ){ # cat(paste0("PASS: ensemble stability scores averaged by position and then scaled" # , "\nmin ensemble averaged stability: ", l_bound_ens # , "\nmax ensemble averaged stability: ", u_bound_ens)) # }else{ # cat(paste0("FAIL: avergaed duet scores could not be scaled b/w -1 and 1" # , "\nmin ensemble averaged stability: ", l_bound_ens # , "\nmax ensemble averaged stability: ", u_bound_ens)) # quit() # } ################################################################## # output #write.csv(combined_df, outfile_mean_ens_st_aff write.csv(mean_ens_stability_by_position , outfile_mean_ens_st_aff , row.names = F) cat("Finished writing file:\n" , outfile_mean_ens_st_aff , "\nNo. of rows:", nrow(mean_ens_stability_by_position) , "\nNo. of cols:", ncol(mean_ens_stability_by_position)) # end of script #===============================================================