#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Aug 19 14:33:51 2020 @author: tanu """ #%% load packages import os,sys import subprocess import argparse import requests import re import time from bs4 import BeautifulSoup import pandas as pd from pandas.api.types import is_string_dtype from pandas.api.types import is_numeric_dtype #%%============================================================================ homedir = os.path.expanduser('~') #print(homedir) host = 'http://biosig.unimelb.edu.au' # Needed if things try to block the 'requests' user agent #headers = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.97 Safari/537.36"} #%% def get_results(url_file): # initilialise empty df dynamut_results_out_df = pd.DataFrame() with open(url_file, 'r') as f: for count, line in enumerate(f): line = line.strip() print('URL no.', count+1, '\n', line) #batch_response = requests.get(line, headers=headers) batch_response = requests.get(line) batch_soup = BeautifulSoup(batch_response.text, features = 'html.parser') # initilialise empty df #dynamut_results_df = pd.DataFrame() for a in batch_soup.find_all('a', href=True, attrs = {'class':'btn btn-default btn-sm'}): print ("Found the URL:", a['href']) single_result_url = host + a['href'] snp = re.search(r'([A-Z]+[0-9]+[A-Z]+$)', single_result_url).group(0) print(snp) print('\nGetting results from:', single_result_url) result_response = requests.get(single_result_url) if result_response.status_code == 200: print('\nFetching results for SNP:', snp) # extract results using the html parser soup = BeautifulSoup(result_response.text, features = 'html.parser') #web_result_raw = soup.find(id = 'predictions').get_text() ddg_dynamut = soup.find(id = 'ddg_dynamut').get_text() ddg_encom = soup.find(id = 'ddg_encom').get_text() ddg_mcsm = soup.find(id = 'ddg_mcsm').get_text() ddg_sdm = soup.find(id = 'ddg_sdm').get_text() ddg_duet = soup.find(id = 'ddg_duet').get_text() dds_encom = soup.find(id = 'dds_encom').get_text() param_dict = {"mutationinformation" : snp , "ddg_dynamut" : ddg_dynamut , "ddg_encom" : ddg_encom , "ddg_mcsm" : ddg_mcsm , "ddg_sdm" : ddg_sdm , "ddg_duet" : ddg_duet , "dds_encom" : dds_encom } results_df = pd.DataFrame.from_dict(param_dict, orient = "index").T print('Result DF:', results_df, 'for URL:', line) #dynamut_results_df = dynamut_results_df.append(results_df)#!1 too many!:-) dynamut_results_out_df = dynamut_results_out_df.append(results_df) #print(dynamut_results_out_df) print('\nWriting dynamut results df') print('\nResults File:' , '\nNo. of rows:', dynamut_results_out_df.shape[0] , '\nNo. of cols:', dynamut_results_out_df.shape[1]) print(dynamut_results_out_df) dynamut_results_out_df.to_csv('/tmp/test_dynamut.csv', index = False) #%% # example 1: multiple urls in a single file my_url_file_multiple = homedir + '/git/LSHTM_analysis/dynamut/dynamut_temp/dynamut_result_url_batch_multiple.txt' print(my_url_file_multiple) get_results(my_url_file_multiple) # example 2: single url in a file my_url_file_single = homedir + '/git/LSHTM_analysis/dynamut/dynamut_temp/dynamut_result_url_batch_single.txt' print(my_url_file_multiple) get_results(my_url_file_single) #%%