#!/usr/bin/env Rscript ######################################################### # TASK: Barplots for mCSM DUET, ligand affinity, and foldX # basic barplots with count of mutations # basic barplots with frequency of count of mutations # , df_colname = "" # , leg_title = "" # , ats = 25 # axis text size # , als = 22 # axis label size # , lts = 20 # legend text size # , ltis = 22 # label title size # , geom_ls = 10 # geom_label size # , yaxis_title = "Number of nsSNPs" # , bp_plot_title = "" # , label_categories = c("Destabilising", "Stabilising") # , title_colour = "chocolate4" # , subtitle_text = NULL # , sts = 20 # , subtitle_colour = "pink" # #, leg_position = c(0.73,0.8) # within plot area # , leg_position = "top" # , bar_fill_values = c("#F8766D", "#00BFC4") ######################################################### #============= # Data: Input #============== #source("~/git/LSHTM_analysis/config/alr.R") source("~/git/LSHTM_analysis/config/embb.R") #source("~/git/LSHTM_analysis/config/katg.R") #source("~/git/LSHTM_analysis/config/gid.R") #source("~/git/LSHTM_analysis/config/pnca.R") #source("~/git/LSHTM_analysis/config/rpob.R") source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R") source("~/git/LSHTM_analysis/scripts/plotting/plotting_colnames.R") #======= # output #======= outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/") cat("plots will output to:", outdir_images) ########################################################### # ConSurf labels # consurf_colOld = "consurf_colour_rev" # consurf_colNew = "consurf_outcome" # df3[[consurf_colNew]] = df3[[consurf_colOld]] # df3[[consurf_colNew]] = as.factor(df3[[consurf_colNew]]) # df3[[consurf_colNew]] consurf_colname = "consurf_outcome" levels(df3[[consurf_colname]]) # SNAP2 labels snap2_colname = "snap2_outcome" levels(df3[[snap2_colname]]) ############################################################## gene_all_cols = colnames(df3)[colnames(df3)%in%all_cols] gene_outcome_cols = colnames(df3)[colnames(df3)%in%c(outcome_cols_stability , outcome_cols_affinity , outcome_cols_conservation)] gene_outcome_cols #======================================================================= #------------------------------ # stability barplots: outcome_cols_stability # label_categories should be = levels(as.factor(plot_df[[df_colname]])) #------------------------------ sts = 22 subtitle_colour = "black" geom_ls = 10 # duetP duetP = stability_count_bp(plotdf = df3 , df_colname = "duet_outcome" , leg_title = "mCSM-DUET" #, label_categories = labels_duet , yaxis_title = "Number of nsSNPs" , leg_position = "none" , subtitle_text = "mCSM-DUET" , geom_ls = geom_ls , bar_fill_values = c("#F8766D", "#00BFC4") , sts = sts , subtitle_colour= subtitle_colour) # foldx foldxP = stability_count_bp(plotdf = df3 , df_colname = "foldx_outcome" #, leg_title = "FoldX" #, label_categories = labels_foldx , yaxis_title = "" , leg_position = "none" , subtitle_text = "FoldX" , geom_ls = geom_ls , bar_fill_values = c("#F8766D", "#00BFC4") , sts = sts , subtitle_colour= subtitle_colour) # deepddg deepddgP = stability_count_bp(plotdf = df3 , df_colname = "deepddg_outcome" #, leg_title = "DeepDDG" #, label_categories = labels_deepddg , yaxis_title = "Number of nsSNPs" , leg_position = "none" , subtitle_text = "DeepDDG" , geom_ls = geom_ls , bar_fill_values = c("#F8766D", "#00BFC4") , sts = sts , subtitle_colour= subtitle_colour) # deepddg dynamut2P = stability_count_bp(plotdf = df3 , df_colname = "ddg_dynamut2_outcome" #, leg_title = "Dynamut2" #, label_categories = labels_ddg_dynamut2_outcome , yaxis_title = "" , leg_position = "none" , subtitle_text = "Dynamut2" , geom_ls = geom_ls , bar_fill_values = c("#F8766D", "#00BFC4") , sts = sts , subtitle_colour= subtitle_colour) dynamut2P # # extract common legend # common_legend = get_legend(duetP + # guides(color = guide_legend(nrow = 1)) + # theme(legend.position = "top")) # # #========================== # #output: STABILITY PLOTS # #=========================== # bp_stability_CLP = paste0(outdir_images # , tolower(gene) # ,"_bp_stability_CL.svg") # # svg(bp_stability_CLP, width = 15, height = 12) # print(paste0("plot filename:", bp_stability_CLP)) # # cowplot::plot_grid( # common_legend, # cowplot::plot_grid(duetP, foldxP # , deepddgP, dynamut2P # , nrow = 2 # , ncol = 2 # #, labels = c("(a)", "(b)", "(c)", "(d)") # , labels = "AUTO" # , label_size = 25) # , ncol = 1 # , nrow = 2 # , rel_heights = c(0.4/10,9/10)) # # dev.off() ########################################################### #========================= # Affinity outcome # check this var: outcome_cols_affinity # get from preformatting or put in globals #========================== DistCutOff LigDist_colname # = "ligand_distance" # from globals ppi2Dist_colname naDist_colname ########################################################### # get plotting data within the distance df3_lig = df3[df3[[LigDist_colname]]