getwd() setwd("~/git/LSHTM_analysis/scripts/plotting/") getwd() ######################################################### # TASK: To combine struct params and meta data for plotting # Input csv files: # 1) _all_params.csv # 2) _meta_data.csv # Output: # 1) muts with opposite effects on stability # 2) large combined df including NAs for AF, OR,etc # Dim: same no. of rows as gene associated meta_data_with_AFandOR # 3) small combined df including NAs for AF, OR, etc. # Dim: same as mcsm data # 4) large combined df excluding NAs # Dim: dim(#1) - no. of NAs(AF|OR) + 1 # 5) small combined df excluding NAs # Dim: dim(#2) - no. of unique NAs - 1 # This script is sourced from other .R scripts for plotting ######################################################### ########################################################## # Installing and loading required packages ########################################################## source("Header_TT.R") #require(data.table) #require(arsenal) #require(compare) #library(tidyverse) #%% variable assignment: input and output paths & filenames drug = "pyrazinamide" gene = "pncA" gene_match = paste0(gene,"_p.") cat(gene_match) #============= # directories #============= datadir = paste0("~/git/Data") indir = paste0(datadir, "/", drug, "/input") outdir = paste0("~/git/Data", "/", drug, "/output") #=========== # input #=========== #in_filename = "mcsm_complex1_normalised.csv" in_filename_params = paste0(tolower(gene), "_all_params.csv") infile_params = paste0(outdir, "/", in_filename_params) cat(paste0("Input file 1:", infile_params) ) # infile 2: gene associated meta data #in_filename_gene_metadata = paste0(tolower(gene), "_meta_data_with_AFandOR.csv") in_filename_gene_metadata = paste0(tolower(gene), "_metadata.csv") infile_gene_metadata = paste0(outdir, "/", in_filename_gene_metadata) cat(paste0("Input infile 2:", infile_gene_metadata)) #=========== # output #=========== # mutations with opposite effects out_filename_opp_muts = paste0(tolower(gene), "_muts_opp_effects.csv") outfile_opp_muts = paste0(outdir, "/", out_filename_opp_muts) #%%=============================================================== ########################### # Read file: struct params ########################### cat("Reading struct params including mcsm:" , in_filename_params) mcsm_data = read.csv(infile_params #, row.names = 1 , stringsAsFactors = F , header = T) cat("Input dimensions:", dim(mcsm_data)) #416, 86 # clear variables rm(in_filename_params, infile_params) str(mcsm_data) table(mcsm_data$duet_outcome); sum(table(mcsm_data$duet_outcome) ) # spelling Correction 1: DUET incase American spelling needed! #mcsm_data$duet_outcome[mcsm_data$duet_outcome=="Stabilising"] <- "Stabilizing" #mcsm_data$duet_outcome[mcsm_data$duet_outcome=="Destabilising"] <- "Destabilizing" # checks: should be the same as above table(mcsm_data$duet_outcome); sum(table(mcsm_data$duet_outcome) ) head(mcsm_data$duet_outcome); tail(mcsm_data$duet_outcome) # spelling Correction 2: Ligand incase American spelling needed! table(mcsm_data$ligand_outcome); sum(table(mcsm_data$ligand_outcome) ) #mcsm_data$ligand_outcome[mcsm_data$ligand_outcome=="Stabilising"] <- "Stabilizing" #mcsm_data$ligand_outcome[mcsm_data$ligand_outcome=="Destabilising"] <- "Destabilizing" # checks: should be the same as above table(mcsm_data$ligand_outcome); sum(table(mcsm_data$ligand_outcome) ) head(mcsm_data$ligand_outcome); tail(mcsm_data$ligand_outcome) # muts with opposing effects on protomer and ligand stability table(mcsm_data$duet_outcome != mcsm_data$ligand_outcome) changes = mcsm_data[which(mcsm_data$duet_outcome != mcsm_data$ligand_outcome),] # sanity check: redundant, but uber cautious! dl_i = which(mcsm_data$duet_outcome != mcsm_data$ligand_outcome) ld_i = which(mcsm_data$ligand_outcome != mcsm_data$duet_outcome) cat("Identifying muts with opposite stability effects") if(nrow(changes) == (table(mcsm_data$duet_outcome != mcsm_data$ligand_outcome)[[2]]) & identical(dl_i,ld_i)) { cat("PASS: muts with opposite effects on stability and affinity correctly identified" , "\nNo. of such muts: ", nrow(changes)) }else { cat("FAIL: unsuccessful in extracting muts with changed stability effects") } #*************************** # write file: changed muts write.csv(changes, outfile_opp_muts) cat("Finished writing file for muts with opp effects:" , "\nFilename: ", outfile_opp_muts , "\nDim:", dim(changes)) # clear variables rm(out_filename_opp_muts, outfile_opp_muts) rm(changes, dl_i, ld_i) #*************************** # count na in each column na_count = sapply(mcsm_data, function(y) sum(length(which(is.na(y))))); na_count # sort by mutationinformation ##mcsm_data = mcsm_data[order(mcsm_data$mutationinformation),] ##head(mcsm_data$mutationinformation) df_ncols = ncol(mcsm_data) # REMOVE as this is dangerous due to dup muts # get freq count of positions and add to the df #setDT(mcsm_data)[, occurrence := .N, by = .(position)] #cat("Added 1 col: position frequency to see which posn has how many muts" # , "\nNo. of cols now", ncol(mcsm_data) # , "\nNo. of cols before: ", df_ncols) #pos_count_check = data.frame(mcsm_data$position, mcsm_data$occurrence) # check duplicate muts if (length(unique(mcsm_data$mutationinformation)) == length(mcsm_data$mutationinformation)){ cat("No duplicate mutations in mcsm data") }else{ dup_muts = mcsm_data[duplicated(mcsm_data$mutationinformation),] dup_muts_nu = length(unique(dup_muts$mutationinformation)) cat(paste0("CAUTION:", nrow(dup_muts), " Duplicate mutations identified" , "\nOf these, no. of unique mutations are:", dup_muts_nu , "\nExtracting df with unique mutations only")) mcsm_data_u = mcsm_data[!duplicated(mcsm_data$mutationinformation),] } if (nrow(mcsm_data_u) == length(unique(mcsm_data$mutationinformation))){ cat("Df without duplicate mutations successfully extracted") } else{ cat("FAIL: could not extract clean df!") quit() } ########################### # 2: Read file: _meta data.csv ########################### cat("Reading meta data file:", infile_gene_metadata) gene_metadata <- read.csv(infile_gene_metadata , stringsAsFactors = F , header = T) cat("Dim:", dim(gene_metadata)) #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # FIXME: remove # counting NAs in AF, OR cols: if (identical(sum(is.na(gene_metadata$OR)) , sum(is.na(gene_metadata$pvalue)) , sum(is.na(gene_metadata$AF)))){ cat("PASS: NA count match for OR, pvalue and AF\n") na_count = sum(is.na(gene_metadata$AF)) cat("No. of NAs: ", sum(is.na(gene_metadata$OR))) } else{ cat("FAIL: NA count mismatch" , "\nNA in OR: ", sum(is.na(gene_metadata$OR)) , "\nNA in pvalue: ", sum(is.na(gene_metadata$pvalue)) , "\nNA in AF:", sum(is.na(gene_metadata$AF))) } #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # clear variables rm(in_filename_gene_metadata, infile_gene_metadata) str(gene_metadata) # sort by position (same as mcsm_data) # earlier it was mutationinformation #head(gene_metadata$mutationinformation) #gene_metadata = gene_metadata[order(gene_metadata$mutationinformation),] ##head(gene_metadata$mutationinformation) head(gene_metadata$position) gene_metadata = gene_metadata[order(gene_metadata$position),] head(gene_metadata$position) ########################### # Merge 1: two dfs with NA # merged_df2 ########################### head(mcsm_data$mutationinformation) head(gene_metadata$mutationinformation) # Find common columns b/w two df merging_cols = intersect(colnames(mcsm_data), colnames(gene_metadata)) cat(paste0("Merging dfs with NAs: big df (1-many relationship b/w id & mut)" , "\nNo. of merging cols:", length(merging_cols) , "\nMerging columns identified:")) print(merging_cols) #============= # merged_df2): gene_metadata + mcsm_data #============== merged_df2 = merge(x = gene_metadata , y = mcsm_data , by = merging_cols , all.y = T) cat("Dim of merged_df2: ", dim(merged_df2) #4520, 11 ) head(merged_df2$position) #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # FIXME: count how many unique muts have entries in meta data # sanity check cat("Checking nrows in merged_df2") if(nrow(gene_metadata) == nrow(merged_df2)){ cat("nrow(merged_df2) = nrow (gene associated gene_metadata)" ,"\nExpected no. of rows: ",nrow(gene_metadata) ,"\nGot no. of rows: ", nrow(merged_df2)) } else{ cat("nrow(merged_df2)!= nrow(gene associated gene_metadata)" , "\nExpected no. of rows after merge: ", nrow(gene_metadata) , "\nGot no. of rows: ", nrow(merged_df2) , "\nFinding discrepancy") merged_muts_u = unique(merged_df2$mutationinformation) meta_muts_u = unique(gene_metadata$mutationinformation) # find the index where it differs unique(meta_muts_u[! meta_muts_u %in% merged_muts_u]) } #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # sort by position head(merged_df2$position) merged_df2 = merged_df2[order(merged_df2$position),] head(merged_df2$position) merged_df2v3 = merge(x = gene_metadata , y = mcsm_data , by = merging_cols , all = T) merged_df2v2 = merge(x = gene_metadata , y = mcsm_data , by = merging_cols , all.x = T) #!=!=!=!=!=!=!=! # COMMENT: used all.y since position 186 is not part of the struc, # hence doesn"t have a mcsm value # but 186 is associated with mutation #!=!=!=!=!=!=!=! # should be False identical(merged_df2, merged_df2v2) table(merged_df2$position%in%merged_df2v2$position) rm(merged_df2v2) #!!!!!!!!!!! check why these differ ######### # merge 3b (merged_df3):remove duplicate mutation information ######### cat("Merging dfs without NAs: small df (removing muts with no AF|OR associated)" ,"\nCannot trust lineage info from this" ,"\nlinking col: Mutationinforamtion" ,"\nfilename: merged_df3") #==#=#=#=#=#=# # Cannot trust lineage, country from this df as the same mutation # can have many different lineages # but this should be good for the numerical corr plots #=#=#=#=#=#=#= merged_df3 = merged_df2[!duplicated(merged_df2$mutationinformation),] head(merged_df3$position); tail(merged_df3$position) # should be sorted # sanity check cat("Checking nrows in merged_df3") if(nrow(mcsm_data) == nrow(merged_df3)){ cat("PASS: No. of rows match with mcsm_data" ,"\nExpected no. of rows: ", nrow(mcsm_data) ,"\nGot no. of rows: ", nrow(merged_df3)) } else { cat("FAIL: No. of rows mismatch" , "\nNo. of rows mcsm_data: ", nrow(mcsm_data) , "\nNo. of rows merged_df3: ", nrow(merged_df3)) } # counting NAs in AF, OR cols in merged_df3 # this is becuase mcsm has no AF, OR cols, # so you cannot count NAs if (identical(sum(is.na(merged_df3$OR)) , sum(is.na(merged_df3$pvalue)) , sum(is.na(merged_df3$AF)))){ cat("PASS: NA count match for OR, pvalue and AF\n") na_count_df3 = sum(is.na(merged_df3$AF)) cat("No. of NAs: ", sum(is.na(merged_df3$OR))) } else{ cat("FAIL: NA count mismatch" , "\nNA in OR: ", sum(is.na(merged_df3$OR)) , "\nNA in pvalue: ", sum(is.na(merged_df3$pvalue)) , "\nNA in AF:", sum(is.na(merged_df3$AF))) } ########################### # 4: merging two dfs: without NA ########################### ######### # merge 4a (merged_df2_comp): same as merge 1 but excluding NA ######### cat("Merging dfs without any NAs: big df (1-many relationship b/w id & mut)" ,"\nlinking col: Mutationinforamtion" ,"\nfilename: merged_df2_comp") merged_df2_comp = merged_df2[!is.na(merged_df2$AF),] #merged_df2_comp = merged_df2[!duplicated(merged_df2$mutationinformation),] # sanity check cat("Checking nrows in merged_df2_comp") if(nrow(merged_df2_comp) == (nrow(merged_df2) - na_count + 1)){ cat("PASS: No. of rows match" ,"\nDim of merged_df2_comp: " ,"\nExpected no. of rows: ", nrow(merged_df2) - na_count + 1 , "\nNo. of rows: ", nrow(merged_df2_comp) , "\nNo. of cols: ", ncol(merged_df2_comp)) }else{ cat("FAIL: No. of rows mismatch" ,"\nExpected no. of rows: ", nrow(merged_df2) - na_count + 1 ,"\nGot no. of rows: ", nrow(merged_df2_comp)) } ######### # merge 4b (merged_df3_comp): remove duplicate mutation information ######### merged_df3_comp = merged_df2_comp[!duplicated(merged_df2_comp$mutationinformation),] cat("Dim of merged_df3_comp: " , "\nNo. of rows: ", nrow(merged_df3_comp) , "\nNo. of cols: ", ncol(merged_df3_comp)) # alternate way of deriving merged_df3_comp foo = merged_df3[!is.na(merged_df3$AF),] # compare dfs: foo and merged_df3_com all.equal(foo, merged_df3) summary(comparedf(foo, merged_df3)) # sanity check cat("Checking nrows in merged_df3_comp") if(nrow(merged_df3_comp) == nrow(merged_df3)){ cat("NO NAs detected in merged_df3 in AF|OR cols" ,"\nNo. of rows are identical: ", nrow(merged_df3)) } else{ if(nrow(merged_df3_comp) == nrow(merged_df3) - na_count_df3) { cat("PASS: NAs detected in merged_df3 in AF|OR cols" , "\nNo. of NAs: ", na_count_df3 , "\nExpected no. of rows in merged_df3_comp: ", nrow(merged_df3) - na_count_df3 , "\nGot no. of rows: ", nrow(merged_df3_comp)) } } #=============== end of combining df #********************* # writing 1 file in the style of a loop: merged_df3 # print(output dir) #i = "merged_df3" #out_filename = paste0(i, ".csv") #outfile = paste0(outdir, "/", out_filename) #cat("Writing output file: " # ,"\nFilename: ", out_filename # ,"\nPath: ", outdir) #template: write.csv(merged_df3, "merged_df3.csv") #write.csv(get(i), outfile, row.names = FALSE) #cat("Finished writing: ", outfile # , "\nNo. of rows: ", nrow(get(i)) # , "\nNo. of cols: ", ncol(get(i))) #%% write_output files; all 4 files: outvars = c("merged_df2" , "merged_df3" , "merged_df2_comp" , "merged_df3_comp") cat("Writing output files: " , "\nPath:", outdir) for (i in outvars){ # cat(i, "\n") out_filename = paste0(i, ".csv") # cat(out_filename, "\n") # cat("getting value of variable: ", get(i)) outfile = paste0(outdir, "/", out_filename) # cat("Full output path: ", outfile, "\n") cat("Writing output file:" ,"\nFilename: ", out_filename,"\n") write.csv(get(i), outfile, row.names = FALSE) cat("Finished writing: ", outfile , "\nNo. of rows: ", nrow(get(i)) , "\nNo. of cols: ", ncol(get(i)), "\n") } # alternate way to replace with implicit loop # FIXME #sapply(outvars, function(x, y) write.csv(get(outvars), paste0(outdir, "/", outvars, ".csv"))) #************************* # clear variables rm(mcsm_data, gene_metadata, foo, drug, gene, gene_match, indir, merged_muts_u, meta_muts_u, na_count, df_ncols, outdir) rm(pos_count_check) #============================= end of script