#!/usr/bin/env Rscript ######################################################### # TASK: Script to format data for dm om plots: # generating WF and LF data for each of the parameters: # duet, mcsm-lig, foldx, deepddg, dynamut2, mcsm-na, mcsm-ppi2, encom, dynamut..etc # Called by get_plotting_dfs.R ################################################################## # from plotting_globals.R # DistCutOff, LigDist_colname, ppi2Dist_colname, naDist_colname dm_om_wf_lf_data <- function(df , gene_name = gene # from globals , colnames_to_extract , ligand_dist_colname = LigDist_colname # from globals #, ppi2Dist_colname #from globals used #, naDist_colname #from globals used , dr_muts = dr_muts_col # from globals , other_muts = other_muts_col # from globals , snp_colname = "mutationinformation" , aa_pos_colname = "position" # to sort df by , mut_colname = "mutation" , mut_info_colname = "mutation_info" , mut_info_label_colname = "mutation_info_labels" # if empty, below used #, dr_other_muts_labels = c("DM", "OM") # only used if ^^ = "" , categ_cols_to_factor){ df = as.data.frame(df) df$maf = log10(df$maf) # can't see otherwise # Initialise the required dfs based on gene name geneL_normal = c("pnca") geneL_na = c("gid", "rpob") geneL_ppi2 = c("alr", "embb", "katg", "rpob") # common_dfs common_dfsL = list( wf_duet = data.frame() , lf_duet = data.frame() , wf_mcsm_lig = data.frame() , lf_mcsm_lig = data.frame() , wf_foldx = data.frame() , lf_foldx = data.frame() , wf_deepddg = data.frame() , lf_deepddg = data.frame() , wf_dynamut2 = data.frame() , lf_dynamut2 = data.frame() , wf_consurf = data.frame() , lf_consurf = data.frame() , wf_snap2 = data.frame() , lf_snap2 = data.frame() ) # additional dfs if (tolower(gene_name)%in%geneL_normal){ wf_lf_dataL = common_dfsL } if (tolower(gene_name)%in%geneL_na){ additional_dfL = list( wf_mcsm_na = data.frame() , lf_mcsm_na = data.frame() ) wf_lf_dataL = c(common_dfsL, additional_dfL) } if (tolower(gene_name)%in%geneL_ppi2){ additional_dfL = list( wf_mcsm_ppi2 = data.frame() , lf_mcsm_ppi2 = data.frame() ) wf_lf_dataL = c(common_dfsL, additional_dfL) } cat("\nInitializing an empty list of length:" , length(wf_lf_dataL)) #======================================================================= if (missing(colnames_to_extract)){ colnames_to_extract = c(snp_colname , mut_colname, mut_info_colname, mut_info_label_colname , aa_pos_colname , LigDist_colname # from globals , ppi2Dist_colname # from globals , naDist_colname # from globals , "duet_stability_change" , "duet_scaled" , "duet_outcome" , "ligand_affinity_change", "affinity_scaled" , "ligand_outcome" , "ddg_foldx" , "foldx_scaled" , "foldx_outcome" , "deepddg" , "deepddg_scaled" , "deepddg_outcome" , "asa" , "rsa" , "rd_values" , "kd_values" , "log10_or_mychisq" , "neglog_pval_fisher" , "maf" #"af" , "ddg_dynamut2" , "ddg_dynamut2_scaled", "ddg_dynamut2_outcome" , "mcsm_ppi2_affinity" , "mcsm_ppi2_scaled" , "mcsm_ppi2_outcome" , "consurf_score" , "consurf_scaled" , "consurf_outcome" # exists now , "consurf_colour_rev" , "snap2_score" , "snap2_scaled" , "snap2_outcome" , "mcsm_na_affinity" , "mcsm_na_scaled" , "mcsm_na_outcome" , "provean_score" , "provean_scaled" , "provean_outcome") }else{ colnames_to_extract = c(mut_colname, mut_info_colname, mut_info_label_colname , aa_pos_colname, LigDist_colname , colnames_to_extract) } comb_df = df[, colnames(df)%in%colnames_to_extract] comb_df_s = dplyr::arrange(comb_df, aa_pos_colname) #======================================================================= if(missing(categ_cols_to_factor)){ categ_cols_to_factor = grep( "_outcome|_info", colnames(comb_df_s) ) }else{ categ_cols_to_factor = categ_cols_to_factor } #fact_cols = colnames(comb_df_s)[grepl( "_outcome|_info", colnames(comb_df_s) )] fact_cols = colnames(comb_df_s)[categ_cols_to_factor] if (any(lapply(comb_df_s[, fact_cols], class) == "character")){ cat("\nChanging", length(categ_cols_to_factor), "cols to factor") comb_df_s[, fact_cols] <- lapply(comb_df_s[, fact_cols], as.factor) if (all(lapply(comb_df_s[, fact_cols], class) == "factor")){ cat("\nSuccessful: cols changed to factor") } }else{ cat("\nRequested cols aready factors") } #======================================================================= table(comb_df_s[[mut_info_colname]]) # pretty display names i.e. labels to reduce major code duplication later foo_cnames = data.frame(colnames(comb_df_s)) names(foo_cnames) <- "old_name" stability_suffix <- paste0(delta_symbol, delta_symbol, "G") #flexibility_suffix <- paste0(delta_symbol, delta_symbol, "S") #lig_dn = paste0("Ligand distance (", angstroms_symbol, ")"); lig_dn #mcsm_lig_dn = paste0("Ligand affinity (log fold change)"); mcsm_lig_dn lig_dn = paste0("Lig Dist(", angstroms_symbol, ")"); lig_dn mcsm_lig_dn = paste0("mCSM-lig"); mcsm_lig_dn duet_dn = paste0("DUET ", stability_suffix); duet_dn foldx_dn = paste0("FoldX ", stability_suffix); foldx_dn deepddg_dn = paste0("Deepddg " , stability_suffix); deepddg_dn dynamut2_dn = paste0("Dynamut2 " , stability_suffix); dynamut2_dn mcsm_na_dn = paste0("mCSM-NA ", stability_suffix); mcsm_na_dn mcsm_ppi2_dn = paste0("mCSM-PPI2 ", stability_suffix); mcsm_ppi2_dn consurf_dn = paste0("ConSurf"); consurf_dn snap2_dn = paste0("SNAP2"); snap2_dn provean_dn = paste0("PROVEAN"); provean_dn # change column names: plyr new_colnames = c(asa = "ASA" , rsa = "RSA" , rd_values = "RD" , kd_values = "KD" #, log10_or_mychisq = "Log10(OR)" #, neglog_pval_fisher = "-Log(P)" #, af = "MAF" , maf = "Log10(MAF)" #, ligand_dist_colname= lig_dn # cannot handle variable name 'ligand_dist_colname' , affinity_scaled = mcsm_lig_dn , duet_scaled = duet_dn , foldx_scaled = foldx_dn , deepddg_scaled = deepddg_dn , ddg_dynamut2_scaled = dynamut2_dn , mcsm_na_scaled = mcsm_na_dn , mcsm_ppi2_scaled = mcsm_ppi2_dn #, consurf_scaled = consurf_dn , consurf_score = consurf_dn #, consurf_colour_rev = consurf_dn #, snap2_scaled = snap2_dn , snap2_score = snap2_dn , provean_score = provean_dn) comb_df_sl1 = plyr::rename(comb_df_s , replace = new_colnames , warn_missing = T , warn_duplicated = T) # renaming colname using variable i.e ligand_dist_colname: dplyr #comb_df_sl = comb_df_sl1 %>% dplyr::rename(!!lig_dn := all_of(ligand_dist_colname)) comb_df_sl = comb_df_sl1 %>% dplyr::rename(!!lig_dn := all_of(LigDist_colname)) # NEW names(comb_df_sl) #======================= # NEW: Affinity filtered data #======================== # mcsm-lig --> LigDist_colname comb_df_sl_lig = comb_df_sl[comb_df_sl[[lig_dn]] ppi2Dist_colname comb_df_sl_ppi2 = comb_df_sl[comb_df_sl[[ppi2Dist_colname]] naDist_colname comb_df_sl_na = comb_df_sl[comb_df_sl[[naDist_colname]]0 (above average): rapidly evolving, i.e VARIABLE #table(df$consurf_colour_rev) # TODO #1--> "most_variable", 2--> "", 3-->"", 4-->"" #5-->"", 6-->"", 7-->"", 8-->"", 9-->"most_conserved" #==================== # WF data: consurf cols_to_select_consurf = c(static_cols_start, c("consurf_outcome", consurf_dn), static_cols_end) wf_consurf = comb_df_sl[, cols_to_select_consurf] pivot_cols_consurf = cols_to_select_consurf[1: (length(static_cols_start) + 1)]; pivot_cols_consurf expected_rows_lf = nrow(wf_consurf) * (length(wf_consurf) - length(pivot_cols_consurf)) expected_rows_lf # when outcome didn't exist #cols_to_select_consurf = c(static_cols_start, c(consurf_dn), static_cols_end) #wf_consurf = comb_df_sl[, cols_to_select_consurf] # # pivot_cols_consurf = cols_to_select_consurf[1: (length(static_cols_start))]; pivot_cols_consurf # expected_rows_lf = nrow(wf_consurf) * (length(wf_consurf) - length(pivot_cols_consurf)) # expected_rows_lf # LF data: consurf lf_consurf = gather(wf_consurf , key = param_type , value = param_value , all_of(consurf_dn):tail(static_cols_end,1) , factor_key = TRUE) if (nrow(lf_consurf) == expected_rows_lf){ cat("\nPASS: long format data created for ", consurf_dn) }else{ cat("\nFAIL: long format data could not be created for duet") quit() } # Assign them to the output list wf_lf_dataL[['wf_consurf']] = wf_consurf wf_lf_dataL[['lf_consurf']] = lf_consurf ########################################################################### #============== # SNAP2: LF #============== # WF data: snap2 cols_to_select_snap2 = c(static_cols_start, c("snap2_outcome", snap2_dn), static_cols_end) wf_snap2 = comb_df_sl[, cols_to_select_snap2] pivot_cols_snap2 = cols_to_select_snap2[1: (length(static_cols_start) + 1)]; pivot_cols_snap2 expected_rows_lf = nrow(wf_snap2) * (length(wf_snap2) - length(pivot_cols_snap2)) expected_rows_lf # LF data: snap2 lf_snap2 = gather(wf_snap2 , key = param_type , value = param_value , all_of(snap2_dn):tail(static_cols_end,1) , factor_key = TRUE) if (nrow(lf_snap2) == expected_rows_lf){ cat("\nPASS: long format data created for ", snap2_dn) }else{ cat("\nFAIL: long format data could not be created for duet") quit() } # Assign them to the output list wf_lf_dataL[['wf_snap2']] = wf_snap2 wf_lf_dataL[['lf_snap2']] = lf_snap2 #============== # Provean2: LF #============== # WF data: provean cols_to_select_provean = c(static_cols_start, c("provean_outcome", provean_dn), static_cols_end) wf_provean = comb_df_sl[, cols_to_select_provean] pivot_cols_provean = cols_to_select_provean[1: (length(static_cols_start) + 1)]; pivot_cols_provean expected_rows_lf = nrow(wf_provean) * (length(wf_provean) - length(pivot_cols_provean)) expected_rows_lf # LF data: provean lf_provean = gather(wf_provean , key = param_type , value = param_value , all_of(provean_dn):tail(static_cols_end,1) , factor_key = TRUE) if (nrow(lf_provean) == expected_rows_lf){ cat("\nPASS: long format data created for ", provean_dn) }else{ cat("\nFAIL: long format data could not be created for duet") quit() } # Assign them to the output list wf_lf_dataL[['wf_provean']] = wf_provean wf_lf_dataL[['lf_provean']] = lf_provean ########################################################################### # AFFINITY cols ########################################################################### #========================= # mCSM-lig: # data filtered by cut off #========================= #--------------------- # mCSM-lig: WF and lF #---------------------- # WF data: mcsm_lig cols_to_select_mcsm_lig = c(static_cols_start, c("ligand_outcome", mcsm_lig_dn), static_cols_end) wf_mcsm_lig = comb_df_sl_lig[, cols_to_select_mcsm_lig] # filtered df pivot_cols_mcsm_lig = cols_to_select_mcsm_lig[1: (length(static_cols_start) + 1)]; pivot_cols_mcsm_lig expected_rows_lf = nrow(wf_mcsm_lig) * (length(wf_mcsm_lig) - length(pivot_cols_mcsm_lig)) expected_rows_lf # LF data: mcsm_lig lf_mcsm_lig = gather(wf_mcsm_lig , key = param_type , value = param_value , all_of(mcsm_lig_dn):tail(static_cols_end,1) , factor_key = TRUE) if (nrow(lf_mcsm_lig) == expected_rows_lf){ cat("\nPASS: long format data created for ", mcsm_lig_dn) }else{ cat("\nFAIL: long format data could not be created for mcsm_lig") quit() } # Assign them to the output list wf_lf_dataL[['wf_mcsm_lig']] = wf_mcsm_lig wf_lf_dataL[['lf_mcsm_lig']] = lf_mcsm_lig #==================== # mcsm-NA affinity # data filtered by cut off #==================== if (tolower(gene_name)%in%geneL_na){ #--------------- # mCSM-NA: WF and lF #----------------- # WF data: mcsm-na cols_to_select_mcsm_na = c(static_cols_start, c("mcsm_na_outcome", mcsm_na_dn), static_cols_end) #wf_mcsm_na = comb_df_sl[, cols_to_select_mcsm_na] wf_mcsm_na = comb_df_sl_na[, cols_to_select_mcsm_na] pivot_cols_mcsm_na = cols_to_select_mcsm_na[1: (length(static_cols_start) + 1)]; pivot_cols_mcsm_na expected_rows_lf = nrow(wf_mcsm_na) * (length(wf_mcsm_na) - length(pivot_cols_mcsm_na)) expected_rows_lf # LF data: mcsm-na lf_mcsm_na = gather(wf_mcsm_na , key = param_type , value = param_value , all_of(mcsm_na_dn):tail(static_cols_end,1) , factor_key = TRUE) if (nrow(lf_mcsm_na) == expected_rows_lf){ cat("\nPASS: long format data created for ", mcsm_na_dn) }else{ cat("\nFAIL: long format data could not be created for duet") quit() } # Assign them to the output list wf_lf_dataL[['wf_mcsm_na']] = wf_mcsm_na wf_lf_dataL[['lf_mcsm_na']] = lf_mcsm_na } #========================= # mcsm-ppi2 affinity # data filtered by cut off #======================== if (tolower(gene_name)%in%geneL_ppi2){ #----------------- # mCSM-PPI2: WF and lF #----------------- # WF data: mcsm-ppi2 cols_to_select_mcsm_ppi2 = c(static_cols_start, c("mcsm_ppi2_outcome", mcsm_ppi2_dn), static_cols_end) #wf_mcsm_ppi2 = comb_df_sl[, cols_to_select_mcsm_ppi2] wf_mcsm_ppi2 = comb_df_sl_ppi2[, cols_to_select_mcsm_ppi2] pivot_cols_mcsm_ppi2 = cols_to_select_mcsm_ppi2[1: (length(static_cols_start) + 1)]; pivot_cols_mcsm_ppi2 expected_rows_lf = nrow(wf_mcsm_ppi2) * (length(wf_mcsm_ppi2) - length(pivot_cols_mcsm_ppi2)) expected_rows_lf # LF data: mcsm-ppi2 lf_mcsm_ppi2 = gather(wf_mcsm_ppi2 , key = param_type , value = param_value , all_of(mcsm_ppi2_dn):tail(static_cols_end,1) , factor_key = TRUE) if (nrow(lf_mcsm_ppi2) == expected_rows_lf){ cat("\nPASS: long format data created for ", mcsm_ppi2_dn) }else{ cat("\nFAIL: long format data could not be created for duet") quit() } # Assign them to the output list wf_lf_dataL[['wf_mcsm_ppi2']] = wf_mcsm_ppi2 wf_lf_dataL[['lf_mcsm_ppi2']] = lf_mcsm_ppi2 } return(wf_lf_dataL) } ############################################################################