#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Aug 6 12:56:03 2019 @author: tanu """ # FIXME: include error checking to enure you only # concentrate on positions that have structural info? # FIXME: import dirs.py to get the basic dir paths available #======================================================================= # TASK: extract ALL pncA_p. mutations from GWAS data # Input data file has the following format: each row = unique sample id # id,country,lineage,sublineage,drtype,pyrazinamide,dr_mutations_pyrazinamide,other_mutations_pyrazinamide... # 0,sampleID,USA,lineage2,lineage2.2.1,Drug-resistant,0.0,WT,pncA_p.POS; pncA_c.POS... # where multiple mutations and multiple mutation types are separated by ';'. We are interested in the # protein coding region i.e mutation with the 'p.' format. # the script splits the mutations on the ';' and extracts protein coding muts only # where each row is a separate mutation # sample ids AND mutations are NOT unique, but the COMBINATION (sample id + mutation) = unique # output files: # 0) pnca_common_ids.csv # 1) pnca_ambiguous_muts.csv # 2) pnca_mcsm_snps.csv # 3) pnca_metadata.csv # 4) pnca_all_muts_msa.csv # 5) pnca_mutational_positons.csv #======================================================================= #%% load libraries import os, sys import pandas as pd #import numpy as np #from pandas.api.types import is_string_dtype #from pandas.api.types import is_numeric_dtype #%% specify homedir as python doesn't recognise tilde homedir = os.path.expanduser('~') # set working dir os.getcwd() os.chdir(homedir + '/git/LSHTM_analysis/meta_data_analysis') os.getcwd() # import aa dict from reference_dict import my_aa_dict #CHECK DIR STRUC THERE! #======================================================================= #%% variable assignment: input and output paths & filenames drug = 'pyrazinamide' gene = 'pncA' gene_match = gene + '_p.' #======= # data dir #======= #indir = 'git/Data/pyrazinamide/input/original' datadir = homedir + '/' + 'git/Data' #======= # input #======= #indir = 'git/Data/pyrazinamide/input/original' in_filename = 'original_tanushree_data_v2.csv' infile = datadir + '/' + in_filename print('Input filename: ', in_filename , '\nInput path: ', indir) #======= # output #======= # several output files # output filenames in respective sections at the time of outputting files outdir = datadir + '/' + drug + '/' + 'output' print('Output filename: in the respective sections' , '\nOutput path: ', outdir) #%%end of variable assignment for input and output files #======================================================================= #%% Read input file master_data = pd.read_csv(infile, sep = ',') # column names #list(master_data.columns) # extract elevant columns to extract from meta data related to the pyrazinamide meta_data = master_data[['id' ,'country' ,'lineage' ,'sublineage' ,'drtype' , 'pyrazinamide' , 'dr_mutations_pyrazinamide' , 'other_mutations_pyrazinamide' ]] del(master_data) # checks and results total_samples = meta_data['id'].nunique() print('RESULT: Total samples:', total_samples) print('======================================================================') # counts NA per column meta_data.isna().sum() print('No. of NAs/column:' + '\n', meta_data.isna().sum()) print('======================================================================') # glance meta_data.head() # equivalent of table in R # pyrazinamide counts meta_data.pyrazinamide.value_counts() print('RESULT: Sus and Res samples:\n', meta_data.pyrazinamide.value_counts()) print('======================================================================') # clear variables del(indir, in_filename,infile) #del(outdir) #%% # !!!IMPORTANT!!! sanity check: # This is to find out how many samples have 1 and more than 1 mutation,so you # can use it to check if your data extraction process for dr_muts # and other_muts has worked correctly AND also to check the dim of the # final formatted data. # This will have: unique COMBINATION of sample id and pncA_p.mutations #======== # First: counting pncA_p. mutations in dr_mutations_pyrazinamide column #======== print('Now counting WT & pncA_p. muts within the column: dr_mutations_pyrazinamide') # drop na and extract a clean df clean_df = meta_data.dropna(subset=['dr_mutations_pyrazinamide']) # sanity check: count na na_count = meta_data['dr_mutations_pyrazinamide'].isna().sum() if len(clean_df) == (total_samples - na_count): print('PASS: clean_df extracted: length is', len(clean_df), '\nNo.of NA s=', na_count, '/', total_samples) else: print('FAIL: dropping NA failed') print('======================================================================') dr_pnca_count = 0 wt = 0 id_dr = [] id2_dr = [] for i, id in enumerate(clean_df.id): # print (i, id) # id_dr.append(id) # count_pnca_dr = clean_df.dr_mutations_pyrazinamide.iloc[i].count('pncA_p.') #works 2201 count_pnca_dr = clean_df.dr_mutations_pyrazinamide.iloc[i].count(gene_match) #works 2201 if count_pnca_dr > 0: id_dr.append(id) if count_pnca_dr > 1: id2_dr.append(id) # print(id, count_pnca_dr) dr_pnca_count = dr_pnca_count + count_pnca_dr count_wt = clean_df.dr_mutations_pyrazinamide.iloc[i].count('WT') wt = wt + count_wt print('RESULTS:') print('Total WT in dr_mutations_pyrazinamide:', wt) print('Total matches of', gene_match, 'in dr_mutations_pyrazinamide:', dr_pnca_count) print('Total samples with > 1', gene_match, 'muts in dr_mutations_pyrazinamide:', len(id2_dr) ) print('======================================================================') del(i, id, wt, id2_dr, clean_df, na_count, count_pnca_dr, count_wt) #======== # Second: counting pncA_p. mutations in dr_mutations_pyrazinamide column #======== print('Now counting WT & pncA_p. muts within the column: other_mutations_pyrazinamide') # drop na and extract a clean df clean_df = meta_data.dropna(subset=['other_mutations_pyrazinamide']) # sanity check: count na na_count = meta_data['other_mutations_pyrazinamide'].isna().sum() if len(clean_df) == (total_samples - na_count): print('PASS: clean_df extracted: length is', len(clean_df), '\nNo.of NA s=', na_count, '/', total_samples) else: print('FAIL: dropping NA failed') print('======================================================================') other_pnca_count = 0 wt_other = 0 id_other = [] id2_other = [] for i, id in enumerate(clean_df.id): # print (i, id) # id_other.append(id) # count_pnca_other = clean_df.other_mutations_pyrazinamide.iloc[i].count('pncA_p.') count_pnca_other = clean_df.other_mutations_pyrazinamide.iloc[i].count(gene_match) if count_pnca_other > 0: id_other.append(id) if count_pnca_other > 1: id2_other.append(id) # print(id, count_pnca_other) other_pnca_count = other_pnca_count + count_pnca_other count_wt = clean_df.other_mutations_pyrazinamide.iloc[i].count('WT') wt_other = wt_other + count_wt print('RESULTS:') print('Total WT in other_mutations_pyrazinamide:', wt_other) print('Total matches of', gene_match, 'in other_mutations_pyrazinamide:', other_pnca_count) print('Total samples with > 1', gene_match, 'muts in other_mutations_pyrazinamide:', len(id2_other) ) print('======================================================================') print('Predicting total no. of rows in your curated df:', dr_pnca_count + other_pnca_count ) expected_rows = dr_pnca_count + other_pnca_count del(i, id, wt_other, clean_df, na_count, id2_other, count_pnca_other, count_wt) #%% ############ # extracting dr and other muts separately along with the common cols ############# print('======================================================================') print('Extracting dr_muts in a dr_mutations_pyrazinamide with other meta_data') print('gene to extract:', gene_match ) #=============== # dr mutations: extract pncA_p. entries with meta data and ONLY dr_muts col #=============== # FIXME: replace pyrazinamide with variable containing the drug name # !!! important !!! meta_data_dr = meta_data[['id' ,'country' ,'lineage' ,'sublineage' ,'drtype' , 'pyrazinamide' , 'dr_mutations_pyrazinamide' ]] print("expected dim should be:", len(meta_data), (len(meta_data.columns)-1) ) print("actual dim:", meta_data_dr.shape ) print('======================================================================') # Extract within this the gene of interest using string match #meta_pnca_dr = meta_data.loc[meta_data.dr_mutations_pyrazinamide.str.contains('pncA_p.*', na = False)] meta_pnca_dr = meta_data_dr.loc[meta_data_dr.dr_mutations_pyrazinamide.str.contains(gene_match, na = False)] dr_id = meta_pnca_dr['id'].unique() print('RESULT: No. of samples with dr muts in pncA:', len(dr_id)) print('checking RESULT:', '\nexpected len =', len(id_dr), '\nactual len =', len(meta_pnca_dr) ) if len(id_dr) == len(meta_pnca_dr): print('PASS: lengths match') else: print('FAIL: length mismatch') print('======================================================================') dr_id = pd.Series(dr_id) #================= # other mutations: extract pncA_p. entries #================== print('======================================================================') print('Extracting dr_muts in a other_mutations_pyrazinamide with other meta_data') # FIXME: replace pyrazinamide with variable containing the drug name # !!! important !!! meta_data_other = meta_data[['id' ,'country' ,'lineage' ,'sublineage' ,'drtype' , 'pyrazinamide' , 'other_mutations_pyrazinamide' ]] print("expected dim should be:", len(meta_data), (len(meta_data.columns)-1) ) print("actual dim:", meta_data_other.shape ) print('======================================================================') # Extract within this the gene of interest using string match meta_pnca_other = meta_data_other.loc[meta_data_other.other_mutations_pyrazinamide.str.contains(gene_match, na = False)] other_id = meta_pnca_other['id'].unique() print('RESULT: No. of samples with other muts:', len(other_id)) print('checking RESULT:', '\nexpected len =', len(id_other), '\nactual len =', len(meta_pnca_other) ) if len(id_other) == len(meta_pnca_other): print('PASS: lengths match') else: print('FAIL: length mismatch') print('======================================================================') other_id = pd.Series(other_id) #%% Find common IDs print('Now extracting common_ids...') common_mut_ids = dr_id.isin(other_id).sum() print('RESULT: No. of common Ids:', common_mut_ids) # sanity checks # check if True: should be since these are common dr_id.isin(other_id).sum() == other_id.isin(dr_id).sum() # check if the 24 Ids that are common are indeed the same! # bit of a tautology, but better safe than sorry! common_ids = dr_id[dr_id.isin(other_id)] common_ids = common_ids.reset_index() common_ids.columns = ['index', 'id'] common_ids2 = other_id[other_id.isin(dr_id)] common_ids2 = common_ids2.reset_index() common_ids2.columns = ['index', 'id2'] # should be True print(common_ids['id'].equals(common_ids2['id2'])) # good sanity check: use it later to check pnca_sample_counts expected_pnca_samples = ( len(meta_pnca_dr) + len(meta_pnca_other) - common_mut_ids ) print("expected no. of pnca samples:", expected_pnca_samples) print('======================================================================') #%% write file #print(outdir) out_filename0 = gene.lower() + '_' + 'common_ids.csv' outfile0 = outdir + '/' + out_filename0 #FIXME: CHECK line len(common_ids) print('Writing file: common ids:', '\nFilename:', out_filename0, '\nPath:', outdir, '\nExpected no. of rows:', len(common_ids) ) common_ids.to_csv(outfile0) print('======================================================================') del(out_filename0) # clear variables del(dr_id, other_id, meta_data_dr, meta_data_other, common_ids, common_mut_ids, common_ids2) #%% Now extract "all" pncA mutations: i.e 'pncA_p.*' print("extracting all pncA mutations from dr_ and other_ cols using string match:", gene_match) #meta_pnca_all = meta_data.loc[meta_data.dr_mutations_pyrazinamide.str.contains(gene_match) | meta_data.other_mutations_pyrazinamide.str.contains(gene_match) ] meta_pnca_all = meta_data.loc[meta_data.dr_mutations_pyrazinamide.str.contains(gene_match, na = False) | meta_data.other_mutations_pyrazinamide.str.contains(gene_match, na = False) ] print('======================================================================') extracted_pnca_samples = meta_pnca_all['id'].nunique() print("RESULT: actual no. of pnca samples extracted:", extracted_pnca_samples) print('======================================================================') # sanity check: length of pnca samples print('Performing sanity check:') if extracted_pnca_samples == expected_pnca_samples: print('No. of pnca samples:', len(meta_pnca_all), '\nPASS: expected & actual no. of pnca samples match') else: print("FAIL: Debug please!") print('======================================================================') # count NA in pyrazinamide column pnca_na = meta_pnca_all['pyrazinamide'].isna().sum() print("No. of pnca samples without pza testing i.e NA in pza column:",pnca_na) # use it later to check number of complete samples from LF data comp_pnca_samples = len(meta_pnca_all) - pnca_na print("comp pnca samples tested for pza:", comp_pnca_samples) print('======================================================================') # Comment: This is still dirty data since these # are samples that have pncA_p. muts, but can have others as well # since the format for mutations is mut1; mut2, etc. print('This is still dirty data: samples have pncA_p. muts, but may have others as well', '\nsince the format for mutations is mut1; mut2, etc.') print('======================================================================') #%% tidy_split():Function to split mutations on specified delimiter: ';' #https://stackoverflow.com/questions/41476150/removing-space-from-dataframe-columns-in-pandas print('Performing tidy_spllit(): to separate the mutations into indivdual rows') # define the split function def tidy_split(df, column, sep='|', keep=False): """ Split the values of a column and expand so the new DataFrame has one split value per row. Filters rows where the column is missing. Params ------ df : pandas.DataFrame dataframe with the column to split and expand column : str the column to split and expand sep : str the string used to split the column's values keep : bool whether to retain the presplit value as it's own row Returns ------- pandas.DataFrame Returns a dataframe with the same columns as `df`. """ indexes = list() new_values = list() #df = df.dropna(subset=[column])#!!!!-----see this incase you need to uncomment based on use case for i, presplit in enumerate(df[column].astype(str)): values = presplit.split(sep) if keep and len(values) > 1: indexes.append(i) new_values.append(presplit) for value in values: indexes.append(i) new_values.append(value) new_df = df.iloc[indexes, :].copy() new_df[column] = new_values return new_df #%% end of tidy_split() #========= # DF1: dr_mutations_pyrazinamide #========= ######## # tidy_split(): on 'dr_mutations_pyrazinamide' column and remove leading white spaces ######## col_to_split1 = 'dr_mutations_pyrazinamide' print ('Firstly, applying tidy split on dr df:', meta_pnca_dr.shape, '\ncolumn name:', col_to_split1) print('======================================================================') # apply tidy_split() dr_WF0 = tidy_split(meta_pnca_dr, col_to_split1, sep = ';') # remove leading white space else these are counted as distinct mutations as well dr_WF0['dr_mutations_pyrazinamide'] = dr_WF0['dr_mutations_pyrazinamide'].str.lstrip() # extract only the samples/rows with pncA_p. dr_pnca_WF0 = dr_WF0.loc[dr_WF0.dr_mutations_pyrazinamide.str.contains(gene_match)] print('lengths after tidy split and extracting', gene_match, 'muts:' , '\nold length:' , len(meta_pnca_dr) , '\nlen after split:', len(dr_WF0) , '\ndr_pnca_WF0 length:', len(dr_pnca_WF0) , '\nexpected len:', dr_pnca_count) if len(dr_pnca_WF0) == dr_pnca_count: print('PASS: length of dr_pnca_WF0 match with expected length') else: print('FAIL: lengths mismatch') print('======================================================================') # count the freq of "dr_muts" samples dr_muts_df = dr_pnca_WF0 [['id', 'dr_mutations_pyrazinamide']] print("dim of dr_muts_df:", dr_muts_df.shape) # add freq column dr_muts_df['dr_sample_freq'] = dr_muts_df.groupby('id')['id'].transform('count') #dr_muts_df['dr_sample_freq'] = dr_muts_df.loc[dr_muts_df.groupby('id')].transform('count') print("revised dim of dr_muts_df:", dr_muts_df.shape) c1 = dr_muts_df.dr_sample_freq.value_counts() print('counting no. of sample frequency:\n', c1) print('======================================================================') # sanity check: length of pnca samples if len(dr_pnca_WF0) == c1.sum(): print('PASS: WF data has expected length', '\nlength of dr_pnca WFO:', c1.sum() ) else: print("FAIL: Debug please!") print('======================================================================') #!!! Important !!! # Assign "column name" on which split was performed as an extra column # This is so you can identify if mutations are dr_type or other in the final df dr_df = dr_pnca_WF0.assign(mutation_info = 'dr_mutations_pyrazinamide') print("dim of dr_df:", dr_df.shape) print('======================================================================') print('End of tidy split() on dr_muts, and added an extra column relecting mut_category') print('======================================================================') #%% #========= # DF2: other_mutations_pyrazinamdie #========= ######## # tidy_split(): on 'other_mutations_pyrazinamide' column and remove leading white spaces ######## col_to_split2 = 'other_mutations_pyrazinamide' print ("applying second tidy split separately on df:", meta_pnca_other.shape, '\n' , "column name:", col_to_split2) print('======================================================================') # apply tidy_split() other_WF1 = tidy_split(meta_pnca_other, col_to_split2, sep = ';') # remove the leading white spaces in the column other_WF1['other_mutations_pyrazinamide'] = other_WF1['other_mutations_pyrazinamide'].str.strip() # extract only the samples/rows with pncA_p. other_pnca_WF1 = other_WF1.loc[other_WF1.other_mutations_pyrazinamide.str.contains(gene_match)] print('lengths after tidy split and extracting', gene_match, 'muts:', '\nold length:' , len(meta_pnca_other), '\nlen after split:', len(other_WF1), '\nother_pnca_WF1 length:', len(other_pnca_WF1), '\nexpected len:', other_pnca_count) if len(other_pnca_WF1) == other_pnca_count: print('PASS: length of dr_pnca_WF0 match with expected length') else: print('FAIL: lengths mismatch') print('======================================================================') # count the freq of "other muts" samples other_muts_df = other_pnca_WF1 [['id', 'other_mutations_pyrazinamide']] print("dim of other_muts_df:", other_muts_df.shape) # add freq column other_muts_df['other_sample_freq'] = other_muts_df.groupby('id')['id'].transform('count') print("revised dim of other_muts_df:", other_muts_df.shape) c2 = other_muts_df.other_sample_freq.value_counts() print('counting no. of sample frequency:\n', c2) print('======================================================================') # sanity check: length of pnca samples if len(other_pnca_WF1) == c2.sum(): print('PASS: WF data has expected length', '\nlength of other_pnca WFO:', c2.sum() ) else: print("FAIL: Debug please!") print('======================================================================') #!!! Important !!! # Assign "column name" on which split was performed as an extra column # This is so you can identify if mutations are dr_type or other in the final df other_df = other_pnca_WF1.assign(mutation_info = 'other_mutations_pyrazinamide') print("dim of other_df:", other_df.shape) print('======================================================================') print('End of tidy split() on other_muts, and added an extra column relecting mut_category') print('======================================================================') #%% #========== # Concatentating the two dfs: equivalent of rbind in R #========== #!!! important !!! # change column names to allow concat: # dr_muts.. & other_muts : "mutation" print('Now concatenating the two dfs by row') dr_df.columns dr_df.rename(columns = {'dr_mutations_pyrazinamide': 'mutation'}, inplace = True) dr_df.columns other_df.columns other_df.rename(columns = {'other_mutations_pyrazinamide': 'mutation'}, inplace = True) other_df.columns print('======================================================================') print('Now appending the two dfs:', '\ndr_df dim:', dr_df.shape, '\nother_df dim:', other_df.shape, '\ndr_df length:', len(dr_df), '\nother_df length:', len(other_df), '\nexpected length:', len(dr_df) + len(other_df) ) print('======================================================================') # checking colnames before concat print("checking colnames BEFORE concatenating the two dfs...") if (set(dr_df.columns) == set(other_df.columns)): print('PASS: column names match necessary for merging two dfs') else: print("FAIL: Debug please!") # concatenate (axis = 0): Rbind pnca_LF0 = pd.concat([dr_df, other_df], ignore_index = True, axis = 0) # checking colnames and length after concat print("checking colnames AFTER concatenating the two dfs...") if (set(dr_df.columns) == set(pnca_LF0.columns)): print('PASS: column names match') else: print("FAIL: Debug please!") print("checking length AFTER concatenating the two dfs...") if len(pnca_LF0) == len(dr_df) + len(other_df): print("PASS:length of df after concat match") else: print("FAIL: length mismatch") print('======================================================================') #%% ########### # This is hopefully clean data, but just double check # Filter LF data so that you only have # mutations corresponding to pncA_p.* (string match pattern) # this will be your list you run OR calcs ########### print('length of pnca_LF0:', len(pnca_LF0), '\nThis should be what you need. But just double check and extract', gene_match, '\nfrom LF0 (concatenated data)') print('using string match:', gene_match) print('Double checking and creating df: pnca_LF1') pnca_LF1 = pnca_LF0[pnca_LF0['mutation'].str.contains(gene_match)] if len(pnca_LF0) == len(pnca_LF1): print('PASS: length of pnca_LF0 and pnca_LF1 match', '\nconfirming extraction and concatenating worked correctly') else: print('FAIL: BUT NOT FATAL!', '\npnca_LF0 and pnca_LF1 lengths differ', '\nsuggesting error in extraction process' ' use pnca_LF1 for downstreama analysis') print('======================================================================') print('length of dfs pre and post processing...', '\npnca WF data (unique samples in each row):', extracted_pnca_samples, '\npnca LF data (unique mutation in each row):', len(pnca_LF1)) print('======================================================================') #%% # final sanity check print('Verifying whether extraction process worked correctly...') if len(pnca_LF1) == expected_rows: print('PASS: extraction process performed correctly', '\nexpected length:', expected_rows, '\ngot:', len(pnca_LF1), '\nRESULT: Total no. of mutant sequences for logo plot:', len(pnca_LF1) ) else: print('FAIL: extraction process has bugs', '\nexpected length:', expected_rows, '\ngot:', len(pnca_LF1), '\Debug please') #%% print('Perfmorning some more sanity checks...') # From LF1: # no. of unique muts distinct_muts = pnca_LF1.mutation.value_counts() print("Distinct mutations:", len(distinct_muts)) # no. of samples contributing the unique muta pnca_LF1.id.nunique() print("No.of samples contributing to distinct muts:", pnca_LF1.id.nunique() ) # no. of dr and other muts mut_grouped = pnca_LF1.groupby('mutation_info').mutation.nunique() print("No.of unique dr and other muts:", pnca_LF1.groupby('mutation_info').mutation.nunique() ) # sanity check if len(distinct_muts) == mut_grouped.sum() : print("PASS:length of LF1 is as expected ") else: print('FAIL: Mistmatch in count of muts', '\nexpected count:', len(distinct_muts), '\nactual count:', mut_grouped.sum(), '\nmuts should be distinct within dr* and other* type', '\ninspecting ...') muts_split = list(pnca_LF1.groupby('mutation_info')) dr_muts = muts_split[0][1].mutation other_muts = muts_split[1][1].mutation # print('splitting muts by mut_info:', muts_split) print('no.of dr_muts samples:', len(dr_muts)) print('no. of other_muts samples', len(other_muts)) #%% # !!! IMPORTANT !!!! # sanity check: There should not be any common muts # i.e the same mutation cannot be classed as a 'drug' AND 'others' if dr_muts.isin(other_muts).sum() & other_muts.isin(dr_muts).sum() > 0: print('WARNING: Ambiguous muts detected in dr_ and other_ mutation category') else: print('PASS: NO ambiguous muts detected', '\nMuts are unique to dr_ and other_ mutation class') # inspect dr_muts and other muts if dr_muts.isin(other_muts).sum() & other_muts.isin(dr_muts).sum() > 0: print('Finding ambiguous muts...', '\n==========================================================', '\nTotal no. of samples in dr_muts present in other_muts:', dr_muts.isin(other_muts).sum(), '\nThese are:\n', dr_muts[dr_muts.isin(other_muts)], '\n==========================================================', '\nTotal no. of samples in other_muts present in dr_muts:', other_muts.isin(dr_muts).sum(), '\nThese are:\n', other_muts[other_muts.isin(dr_muts)], '\n==========================================================') else: print('Error: ambiguous muts present, but extraction failed. Debug!') print('======================================================================') print('Counting no. of ambiguous muts...') if dr_muts[dr_muts.isin(other_muts)].nunique() == other_muts[other_muts.isin(dr_muts)].nunique(): common_muts = dr_muts[dr_muts.isin(other_muts)].value_counts().keys().tolist() print('Distinct no. of ambigiuous muts detected:'+ str(len(common_muts)), 'list of ambiguous mutations (see below):', *common_muts, sep = '\n') else: print('Error: ambiguous muts detected, but extraction failed. Debug!', '\nNo. of ambiguous muts in dr:', len(dr_muts[dr_muts.isin(other_muts)].value_counts().keys().tolist() ), '\nNo. of ambiguous muts in other:', len(other_muts[other_muts.isin(dr_muts)].value_counts().keys().tolist())) print('======================================================================') #%% clear variables del(id_dr, id_other, meta_data, meta_pnca_dr, meta_pnca_other, mut_grouped, muts_split, other_WF1, other_df, other_muts_df, other_pnca_count, pnca_LF0, pnca_na) del(c1, c2, col_to_split1, col_to_split2, comp_pnca_samples, dr_WF0, dr_df, dr_muts_df, dr_pnca_WF0, dr_pnca_count, expected_pnca_samples, other_pnca_WF1) #%% end of data extraction and some files writing. Below are some more files writing. #%%: write file: ambiguous muts # uncomment as necessary #print(outdir) #dr_muts.to_csv('dr_muts.csv', header = True) #other_muts.to_csv('other_muts.csv', header = True) out_filename1 = gene.lower() + '_' + 'ambiguous_muts.csv' outfile1 = outdir + '/' + out_filename1 print('Writing file: ambiguous muts', '\nFilename:', out_filename1, '\nPath:', outdir) #common_muts = ['pncA_p.Val180Phe','pncA_p.Gln10Pro'] # test inspect = pnca_LF1[pnca_LF1['mutation'].isin(common_muts)] inspect.to_csv(outfile1) print('Finished writing:', out_filename1, '\nNo. of rows:', len(inspect), '\nNo. of cols:', len(inspect.columns), '\nNo. of rows = no. of samples with the ambiguous muts present:', dr_muts.isin(other_muts).sum() + other_muts.isin(dr_muts).sum()) print('======================================================================') del(out_filename1) #%% read aa dict and pull relevant info print('Reading aa dict and fetching1 letter aa code', '\nFormatting mutation in mCSM style format: {WT}{MUT}', '\nAdding aa properties') #=========== # Split 'mutation' column into three: wild_type, position and # mutant_type separately. Then map three letter code to one using # reference_dict. # First: Import reference dict # Second: convert to mutation to lowercase for compatibility with dict #=========== pnca_LF1['mutation'] = pnca_LF1.loc[:, 'mutation'].str.lower() #======= # Iterate through the dict, create a lookup dict i.e # lookup_dict = {three_letter_code: one_letter_code}. # lookup dict should be the key and the value (you want to create a column for) # Then use this to perform the mapping separetly for wild type and mutant cols. # The three letter code is extracted using a string match match from the dataframe and then converted # to 'pandas series'since map only works in pandas series #======= lookup_dict = dict() for k, v in my_aa_dict.items(): lookup_dict[k] = v['one_letter_code'] wt = pnca_LF1['mutation'].str.extract('pnca_p.(\w{3})').squeeze() # converts to a series that map works on pnca_LF1['wild_type'] = wt.map(lookup_dict) mut = pnca_LF1['mutation'].str.extract('\d+(\w{3})$').squeeze() pnca_LF1['mutant_type'] = mut.map(lookup_dict) # extract position info from mutation column separetly using string match pnca_LF1['position'] = pnca_LF1['mutation'].str.extract(r'(\d+)') # clear variables del(k, v, wt, mut, lookup_dict) #print('======================================================================') #========= # iterate through the dict, create a lookup dict that i.e # lookup_dict = {three_letter_code: aa_prop_water} # Do this for both wild_type and mutant as above. #========= # initialise a sub dict that is lookup dict for three letter code to aa prop lookup_dict = dict() for k, v in my_aa_dict.items(): lookup_dict[k] = v['aa_prop_water'] #print(lookup_dict) wt = pnca_LF1['mutation'].str.extract('pnca_p.(\w{3})').squeeze() # converts to a series that map works on pnca_LF1['wt_prop_water'] = wt.map(lookup_dict) mut = pnca_LF1['mutation'].str.extract('\d+(\w{3})$').squeeze() pnca_LF1['mut_prop_water'] = mut.map(lookup_dict) # added two more cols # clear variables del(k, v, wt, mut, lookup_dict) #print('======================================================================') #======== # iterate through the dict, create a lookup dict that i.e # lookup_dict = {three_letter_code: aa_prop_polarity} # Do this for both wild_type and mutant as above. #========= # initialise a sub dict that is lookup dict for three letter code to aa prop lookup_dict = dict() for k, v in my_aa_dict.items(): lookup_dict[k] = v['aa_prop_polarity'] #print(lookup_dict) wt = pnca_LF1['mutation'].str.extract('pnca_p.(\w{3})').squeeze() # converts to a series that map works on pnca_LF1['wt_prop_polarity'] = wt.map(lookup_dict) mut = pnca_LF1['mutation'].str.extract(r'\d+(\w{3})$').squeeze() pnca_LF1['mut_prop_polarity'] = mut.map(lookup_dict) # added two more cols # clear variables del(k, v, wt, mut, lookup_dict) #print('======================================================================') #======== # iterate through the dict, create a lookup dict that i.e # lookup_dict = {three_letter_code: aa_taylor} # Do this for both wild_type and mutant as above. # caution: taylor mapping will create a list within a column #========= #lookup_dict = dict() #for k, v in my_aa_dict.items(): # lookup_dict[k] = v['aa_taylor'] # #print(lookup_dict) # wt = pnca_LF1['mutation'].str.extract('pnca_p.(\w{3})').squeeze() # converts to a series that map works on # pnca_LF1['wt_taylor'] = wt.map(lookup_dict) # mut = pnca_LF1['mutation'].str.extract(r'\d+(\w{3})$').squeeze() # pnca_LF1['mut_taylor'] = mut.map(lookup_dict) # added two more cols # clear variables #del(k, v, wt, mut, lookup_dict) #print('======================================================================') #======== # iterate through the dict, create a lookup dict that i.e # lookup_dict = {three_letter_code: aa_calcprop} # Do this for both wild_type and mutant as above. #========= lookup_dict = dict() for k, v in my_aa_dict.items(): lookup_dict[k] = v['aa_calcprop'] #print(lookup_dict) wt = pnca_LF1['mutation'].str.extract('pnca_p.(\w{3})').squeeze() # converts to a series that map works on pnca_LF1['wt_calcprop'] = wt.map(lookup_dict) mut = pnca_LF1['mutation'].str.extract(r'\d+(\w{3})$').squeeze() pnca_LF1['mut_calcprop'] = mut.map(lookup_dict) # added two more cols # clear variables del(k, v, wt, mut, lookup_dict) print('======================================================================') ######## # combine the wild_type+poistion+mutant_type columns to generate # Mutationinformation (matches mCSM output field) # Remember to use .map(str) for int col types to allow string concatenation ######### pnca_LF1['Mutationinformation'] = pnca_LF1['wild_type'] + pnca_LF1.position.map(str) + pnca_LF1['mutant_type'] print('Created column: Mutationinformation') print('======================================================================') #%% Write file: mCSM muts snps_only = pd.DataFrame(pnca_LF1['Mutationinformation'].unique()) snps_only.head() # assign column name snps_only.columns = ['Mutationinformation'] # count how many positions this corresponds to pos_only = pd.DataFrame(pnca_LF1['position'].unique()) print('Checking NA in snps...')# should be 0 if snps_only.Mutationinformation.isna().sum() == 0: print ('PASS: NO NAs/missing entries for SNPs') else: print('FAIL: SNP has NA, Possible mapping issues from dict?', '\nDebug please!') print('======================================================================') out_filename2 = gene.lower() + '_' + 'mcsm_snps.csv' outfile2 = outdir + '/' + out_filename2 print('Writing file: mCSM style muts', '\nFilename:', out_filename2, '\nPath:', outdir, '\nmutation format (SNP): {WT}{MUT}', '\nNo. of distinct muts:', len(snps_only), '\nNo. of distinct positions:', len(pos_only)) snps_only.to_csv(outfile2, header = False, index = False) print('Finished writing:', out_filename2, '\nNo. of rows:', len(snps_only), '\nNo. of cols:', len(snps_only.columns)) print('======================================================================') del(out_filename2) #%% Write file: pnca_metadata (i.e pnca_LF1) # where each row has UNIQUE mutations NOT unique sample ids out_filename3 = gene.lower() + '_' + 'metadata.csv' outfile3 = outdir + '/' + out_filename3 print('Writing file: LF formatted data', '\nFilename:', out_filename3, '\nPath:', outdir) pnca_LF1.to_csv(outfile3, header = True, index = False) print('Finished writing:', out_filename3, '\nNo. of rows:', len(pnca_LF1), '\nNo. of cols:', len(pnca_LF1.columns) ) print('======================================================================') del(out_filename3) #%% write file: mCSM style but with repitions for MSA and logo plots all_muts_msa = pd.DataFrame(pnca_LF1['Mutationinformation']) all_muts_msa.head() # assign column name all_muts_msa.columns = ['Mutationinformation'] # make sure it is string all_muts_msa.columns.dtype # sort the column all_muts_msa_sorted = all_muts_msa.sort_values(by = 'Mutationinformation') # create an extra column with protein name all_muts_msa_sorted = all_muts_msa_sorted.assign(fasta_name = '3PL1') all_muts_msa_sorted.head() # rearrange columns so the fasta name is the first column (required for mutate.script) all_muts_msa_sorted = all_muts_msa_sorted[['fasta_name', 'Mutationinformation']] all_muts_msa_sorted.head() print('Checking NA in snps...')# should be 0 if all_muts_msa.Mutationinformation.isna().sum() == 0: print ('PASS: NO NAs/missing entries for SNPs') else: print('FAIL: SNP has NA, Possible mapping issues from dict?', '\nDebug please!') print('======================================================================') out_filename4 = gene.lower() + '_' + 'all_muts_msa.csv' outfile4 = outdir + '/' + out_filename4 print('Writing file: mCSM style muts for msa', '\nFilename:', out_filename4, '\nPath:', outdir, '\nmutation format (SNP): {WT}{MUT}', '\nNo.of lines of msa:', len(all_muts_msa), ) all_muts_msa_sorted.to_csv(outfile4, header = False, index = False) print('Finished writing:', out_filename4, '\nNo. of rows:', len(all_muts_msa), '\nNo. of cols:', len(all_muts_msa.columns) ) print('======================================================================') del(out_filename4) #%% write file for mutational positions # count how many positions this corresponds to pos_only = pd.DataFrame(pnca_LF1['position'].unique()) # assign column name pos_only.columns = ['position'] # make sure dtype of column position is int or numeric and not string pos_only.position.dtype pos_only['position'] = pos_only['position'].astype(int) pos_only.position.dtype # sort by position value pos_only_sorted = pos_only.sort_values(by = 'position', ascending = True) out_filename5 = gene.lower() + '_' + 'mutational_positons.csv' outfile5 = outdir + '/' + out_filename5 print('Writing file: mutational positions', '\nNo. of distinct positions:', len(pos_only_sorted), '\nFilename:', out_filename5, '\nPath:', outdir) pos_only_sorted.to_csv(outfile5, header = True, index = False) print('Finished writing:', out_filename5, '\nNo. of rows:', len(pos_only_sorted), '\nNo. of cols:', len(pos_only_sorted.columns) ) print('======================================================================') del(out_filename5) #%% end of script print(u'\u2698' * 50, '\nEnd of script: Data extraction and writing files' '\n' + u'\u2698' * 50 ) #%%