getwd() setwd("/git/github/git/LSHTM_analysis/meta_data_analysis") getwd() #=============== # Step 1: read GWAS raw data stored in Data_original/ #=============== infile = read.csv(file.choose(), stringsAsFactors = F) raw_data = infile[,c("id" , "pyrazinamide" , "dr_mutations_pyrazinamide" , "other_mutations_pyrazinamide")] ##### # 1a: exclude na ##### raw_data = raw_data[!is.na(raw_data$pyrazinamide),] total_samples = length(unique(raw_data$id)) print(total_samples) # sanity check: should be true is.numeric(total_samples) ##### # 1b: combine the two mutation columns ##### raw_data$all_mutations_pyrazinamide = paste(raw_data$dr_mutations_pyrazinamide , raw_data$other_mutations_pyrazinamide) head(raw_data$all_mutations_pyrazinamide) ##### # 1c: create yet another column that contains all the mutations but in lower case ##### raw_data$all_muts_pnca = tolower(raw_data$all_mutations_pyrazinamide) # sanity checks table(grepl("pnca_p",raw_data$all_muts_pnca)) # sanity check: should be TRUE sum(table(grepl("pnca_p",raw_data$all_muts_pnca))) == total_samples # set up variables: can be used for logistic regression as well i = "pnca_p.ala134gly" # has a NA, should NOT exist table(grepl(i,raw_data$all_muts_pnca)) i = "pnca_p.trp68gly" table(grepl(i,raw_data$all_muts_pnca)) mut = grepl(i,raw_data$all_muts_pnca) dst = raw_data$pyrazinamide table(mut, dst) #chisq.test(table(mut,dst)) #fisher.test(table(mut, dst)) #table(mut) ###### read list of muts to calculate OR for (fname3 from pnca_data_extraction.py) pnca_snps_or = read.csv(file.choose() , stringsAsFactors = F , header = T) # extract unique snps to iterate over for AF and OR calcs # total no of unique snps # AF and OR calculations pnca_snps_unique = unique(pnca_snps_or$mutation) # Define OR function x = as.numeric(mut) y = dst or = function(x,y){ tab = as.matrix(table(x,y)) a = tab[2,2] if (a==0){ a<-0.5} b = tab[2,1] if (b==0){ b<-0.5} c = tab[1,2] if (c==0){ c<-0.5} d = tab[1,1] if (d==0){ d<-0.5} (a/b)/(c/d) } dst = raw_data$pyrazinamide ors = sapply(pnca_snps_unique,function(m){ mut = grepl(m,raw_data$all_muts_pnca) or(mut,dst) }) ors pvals = sapply(pnca_snps_unique,function(m){ mut = grepl(m,raw_data$all_muts_pnca) fisher.test(mut,dst)$p.value }) pvals afs = sapply(pnca_snps_unique,function(m){ mut = grepl(m,raw_data$all_muts_pnca) mean(mut) }) afs # check ..hmmm afs['pnca_p.trp68gly'] afs['pnca_p.gln10pro'] afs['pnca_p.leu4ser'] #plot(density(log(ors))) #plot(-log10(pvals)) #hist(log(ors) # ,breaks = 100 # ) # subset df cols to add to the calc param df pnca_snps_cols = pnca_snps_or[c('mutation_info', 'mutation', 'Mutationinformation')] pnca_snps_cols = pnca_snps_cols[!duplicated(pnca_snps_cols$mutation),] rownames(pnca_snps_cols) = pnca_snps_cols$mutation head(rownames(pnca_snps_cols)) #snps_with_AF_and_OR # combine comb_AF_and_OR = data.frame(ors, pvals, afs) head(rownames(comb_AF_and_OR)) # sanity checks: should be the same dim(comb_AF_and_OR); dim(pnca_snps_cols) table(rownames(comb_AF_and_OR)%in%rownames(pnca_snps_cols)) table(rownames(pnca_snps_cols)%in%rownames(comb_AF_and_OR)) # merge the above two df whose dim you checked snps_with_AF_and_OR = merge(comb_AF_and_OR, pnca_snps_cols , by = "row.names" # , all.x = T ) #rm(pnca_snps_cols, pnca_snps_or, raw_data) #=============== # Step 3: Read data file where you will add the calculated OR # Note: this is the big file with one-many relationship between snps and lineages # i.e fname4 from 'pnca_extraction.py' #=============== my_data = read.csv(file.choose() , row.names = 1 , stringsAsFactors = FALSE) head(my_data) length(unique(my_data$id)) # check if first col is 'id': should be TRUE colnames(my_data)[1] == 'id' # sanity check head(my_data$mutation) # FILES TO MERGE: # comb_AF_and_OR: file containing OR # my_data = big meta data file # linking column: mutation head(my_data) merged_df = merge(my_data # big file , snps_with_AF_and_OR # small (afor file) , by = "mutation" , all.x = T) # because you want all the entries of the meta data # sanity checks: should be True # FIXME: I have checked this manually, but make it so it is a pass or a fail! comb_AF_and_OR[rownames(comb_AF_and_OR) == "pnca_p.gln10pro",]$ors merged_df[merged_df$Mutationinformation.x == "Q10P",]$ors merged_df[merged_df$Mutationinformation.x == "Q10P",] # sanity check: very important! colnames(merged_df) table(merged_df$mutation_info.x == merged_df$mutation_info.y) #FIXME: what happened to other 7 and FALSE table(merged_df$Mutationinformation.x == merged_df$Mutationinformation.y) # problem identical(merged_df$Mutationinformation.x, merged_df$Mutationinformation.y) #merged_df[merged_df$Mutationinformation.x != merged_df$Mutationinformation.y,] #throw away the y because that is a smaller df d1 = which(colnames(merged_df) == "mutation_info.y") #21 d2 = which(colnames(merged_df) == "Mutationinformation.y") #22 merged_df2 = merged_df[-c(d1, d2)] #3093 20 colnames(merged_df2) # rename cols colnames(merged_df2)[colnames(merged_df2)== "mutation_info.x"] <- "mutation_info" colnames(merged_df2)[colnames(merged_df2)== "Mutationinformation.x"] <- "Mutationinformation" colnames(merged_df2) # should be 0 sum(is.na(merged_df2$Mutationinformation)) # count na in each column na_count = sapply(merged_df2, function(y) sum(length(which(is.na(y))))); na_count # only some or and Af should be NA #Row.names ors pvals afs #81 81 81 81 colnames(merged_df2)[colnames(merged_df2)== "ors"] <- "OR" colnames(merged_df2)[colnames(merged_df2)== "afs"] <- "AF" colnames(merged_df2)[colnames(merged_df2)== "pvals"] <- "pvalue" colnames(merged_df2) # add log OR and neglog pvalue merged_df2$logor = log(merged_df2$OR) is.numeric(merged_df2$logor) merged_df2$neglog10pvalue = -log10(merged_df2$pvalue) is.numeric(merged_df2$neglog10pvalue) # write file out #write.csv(merged_df, "../Data/meta_data_with_AFandOR_JP_TT.csv") # define output variables drug = 'pyrazinamide' out_dir = paste0("../mcsm_analysis/",drug,"/Data/") outFile = "meta_data_with_AFandOR.csv" output_filename = paste0(outdir, outFile) write.csv(merged_df2, output_filename , row.names = F)