#!/usr/bin/env Rscript getwd() setwd("~/git/LSHTM_analysis/scripts/plotting/") getwd() ######################################################### # TASK: To combine struct params and meta data for plotting # Input csv files: # 1) _all_params.csv # 2) _meta_data.csv # Output: # 1) muts with opposite effects on stability # 2) large combined df including NAs for AF, OR,etc # Dim: same no. of rows as gene associated meta_data_with_AFandOR # 3) small combined df including NAs for AF, OR, etc. # Dim: same as mcsm data # 4) large combined df excluding NAs # Dim: dim(#1) - no. of NAs(AF|OR) + 1 # 5) small combined df excluding NAs # Dim: dim(#2) - no. of unique NAs - 1 # This script is sourced from other .R scripts for plotting ######################################################### ########################################################## # Installing and loading required packages ########################################################## #source("Header_TT.R") require(data.table) require(arsenal) require(compare) library(tidyverse) source("plotting_data.R") # should return the following dfs, directories and variables # my_df # my_df_u # my_df_u_lig # dup_muts cat(paste0("Directories imported:" , "\ndatadir:", datadir , "\nindir:", indir , "\noutdir:", outdir , "\nplotdir:", plotdir)) cat(paste0("Variables imported:" , "\ndrug:", drug , "\ngene:", gene , "\ngene_match:", gene_match , "\nLength of upos:", length(upos) , "\nAngstrom symbol:", angstroms_symbol)) # clear excess variable rm(my_df, upos, dup_muts, my_df_u_lig) #======================================================== #======================================================== #%% variable assignment: input and output paths & filenames drug = "pyrazinamide" gene = "pncA" gene_match = paste0(gene,"_p.") cat(gene_match) #============= # directories #============= datadir = paste0("~/git/Data") indir = paste0(datadir, "/", drug, "/input") outdir = paste0("~/git/Data", "/", drug, "/output") plotdir = paste0("~/git/Data", "/", drug, "/output/plots") #=========== # input #=========== #in_file1: output of plotting_data.R # infile 2: gene associated meta data #in_filename_gene_metadata = paste0(tolower(gene), "_meta_data_with_AFandOR.csv") in_filename_gene_metadata = paste0(tolower(gene), "_metadata.csv") infile_gene_metadata = paste0(outdir, "/", in_filename_gene_metadata) cat(paste0("Input infile 2:", infile_gene_metadata)) #=========== # output #=========== # mutations with opposite effects out_filename_opp_muts = paste0(tolower(gene), "_muts_opp_effects.csv") outfile_opp_muts = paste0(outdir, "/", out_filename_opp_muts) #%%=============================================================== table(my_df_u$duet_outcome); sum(table(my_df_u$duet_outcome) ) # spelling Correction 1: DUET incase American spelling needed! #my_df_u$duet_outcome[my_df_u$duet_outcome=="Stabilising"] <- "Stabilizing" #my_df_u$duet_outcome[my_df_u$duet_outcome=="Destabilising"] <- "Destabilizing" # spelling Correction 2: Ligand incase American spelling needed! table(my_df_u$ligand_outcome); sum(table(my_df_u$ligand_outcome) ) #my_df_u$ligand_outcome[my_df_u$ligand_outcome=="Stabilising"] <- "Stabilizing" #my_df_u$ligand_outcome[my_df_u$ligand_outcome=="Destabilising"] <- "Destabilizing" # muts with opposing effects on protomer and ligand stability table(my_df_u$duet_outcome != my_df_u$ligand_outcome) changes = my_df_u[which(my_df_u$duet_outcome != my_df_u$ligand_outcome),] # sanity check: redundant, but uber cautious! dl_i = which(my_df_u$duet_outcome != my_df_u$ligand_outcome) ld_i = which(my_df_u$ligand_outcome != my_df_u$duet_outcome) cat("Identifying muts with opposite stability effects") if(nrow(changes) == (table(my_df_u$duet_outcome != my_df_u$ligand_outcome)[[2]]) & identical(dl_i,ld_i)) { cat("PASS: muts with opposite effects on stability and affinity correctly identified" , "\nNo. of such muts: ", nrow(changes)) }else { cat("FAIL: unsuccessful in extracting muts with changed stability effects") } #*************************** # write file: changed muts write.csv(changes, outfile_opp_muts) cat("Finished writing file for muts with opp effects:" , "\nFilename: ", outfile_opp_muts , "\nDim:", dim(changes)) # clear variables rm(out_filename_opp_muts, outfile_opp_muts) rm(changes, dl_i, ld_i) # count na in each column na_count = sapply(my_df_u, function(y) sum(length(which(is.na(y))))); na_count df_ncols = ncol(my_df_u) ########################### # 2: Read file: _meta data.csv ########################### cat("Reading meta data file:", infile_gene_metadata) gene_metadata <- read.csv(infile_gene_metadata , stringsAsFactors = F , header = T) cat("Dim:", dim(gene_metadata)) #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # FIXME: remove # counting NAs in AF, OR cols: if (identical(sum(is.na(my_df_u$or_mychisq)) , sum(is.na(my_df_u$pval_fisher)) , sum(is.na(my_df_u$af)))){ cat("\nPASS: NA count match for OR, pvalue and AF\n") na_count = sum(is.na(my_df_u$af)) cat("\nNo. of NAs: ", sum(is.na(my_df_u$or_mychisq))) } else{ cat("\nFAIL: NA count mismatch" , "\nNA in OR: ", sum(is.na(my_df_u$or_mychisq)) , "\nNA in pvalue: ", sum(is.na(my_df_u$pval_fisher)) , "\nNA in AF:", sum(is.na(my_df_u$af))) } if (identical(sum(is.na(my_df_u$or_kin)) , sum(is.na(my_df_u$pwald_kin)) , sum(is.na(my_df_u$af_kin)))){ cat("\nPASS: NA count match for OR, pvalue and AF\n from Kinship matrix calculations") na_count = sum(is.na(my_df_u$af_kin)) cat("\nNo. of NAs: ", sum(is.na(my_df_u$or_kin))) } else{ cat("\nFAIL: NA count mismatch" , "\nNA in OR: ", sum(is.na(my_df_u$or_kin)) , "\nNA in pvalue: ", sum(is.na(my_df_u$pwald_kin)) , "\nNA in AF:", sum(is.na(my_df_u$af_kin))) } #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # clear variables rm(in_filename_gene_metadata, infile_gene_metadata) str(gene_metadata) # sort by position (same as my_df) # earlier it was mutationinformation #head(gene_metadata$mutationinformation) #gene_metadata = gene_metadata[order(gene_metadata$mutationinformation),] ##head(gene_metadata$mutationinformation) head(gene_metadata$position) gene_metadata = gene_metadata[order(gene_metadata$position),] head(gene_metadata$position) ########################### # Merge 1: two dfs with NA # merged_df2 ########################### head(my_df_u$mutationinformation) head(gene_metadata$mutationinformation) # Find common columns b/w two df # FIXME: mutation has empty cell for some muts merging_cols = intersect(colnames(my_df_u), colnames(gene_metadata)) cat(paste0("Merging dfs with NAs: big df (1-many relationship b/w id & mut)" , "\nNo. of merging cols:", length(merging_cols) , "\nMerging columns identified:")) print(merging_cols) # important checks! table(nchar(my_df_u$mutationinformation)) table(nchar(my_df_u$wild_type)) table(nchar(my_df_u$mutant_type)) table(nchar(my_df_u$position)) #============= # merged_df2: gene_metadata + my_df #============== # all.y because x might contain non-structural positions! merged_df2 = merge(x = gene_metadata , y = my_df_u , by = merging_cols , all.y = T) cat("Dim of merged_df2: ", dim(merged_df2)) head(merged_df2$position) #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # FIXME: count how many unique muts have entries in meta data # should PASS cat("Checking nrows in merged_df2") if(nrow(gene_metadata) == nrow(merged_df2)){ cat("PASS: nrow(merged_df2) = nrow (gene associated gene_metadata)" ,"\nExpected no. of rows: ",nrow(gene_metadata) ,"\nGot no. of rows: ", nrow(merged_df2)) } else{ cat("FAIL: nrow(merged_df2)!= nrow(gene associated gene_metadata)" , "\nExpected no. of rows after merge: ", nrow(gene_metadata) , "\nGot no. of rows: ", nrow(merged_df2) , "\nFinding discrepancy") merged_muts_u = unique(merged_df2$mutationinformation) meta_muts_u = unique(gene_metadata$mutationinformation) # find the index where it differs unique(meta_muts_u[! meta_muts_u %in% merged_muts_u]) } #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # sort by position head(merged_df2$position) merged_df2 = merged_df2[order(merged_df2$position),] head(merged_df2$position) merged_df2v3 = merge(x = gene_metadata , y = my_df_u , by = merging_cols , all = T) merged_df2v2 = merge(x = gene_metadata , y = my_df_u , by = merging_cols , all.x = T) #!=!=!=!=!=!=!=! #identical(merged_df2, merged_df2v2) nrow(merged_df2[merged_df2$position==186,]) #!=!=!=!=!=!=!=! # should be False identical(merged_df2, merged_df2v2) table(merged_df2$position%in%merged_df2v2$position) #!!!!!!!!!!! check why these differ ######### # merge 3b (merged_df3):remove duplicated mutations cat("Merging dfs without NAs: small df (removing muts with no AF|OR associated)" ,"\nCannot trust lineage info from this" ,"\nlinking col: mutationinforamtion" ,"\nfilename: merged_df3") #==#=#=#=#=#=# # Cannot trust lineage, country from this df as the same mutation # can have many different lineages # but this should be good for the numerical corr plots #=#=#=#=#=#=#= merged_df3 = merged_df2[!duplicated(merged_df2$mutationinformation),] head(merged_df3$position); tail(merged_df3$position) # should be sorted # sanity check cat("Checking nrows in merged_df3") if(nrow(my_df_u) == nrow(merged_df3)){ cat("PASS: No. of rows match with my_df" ,"\nExpected no. of rows: ", nrow(my_df_u) ,"\nGot no. of rows: ", nrow(merged_df3)) } else { cat("FAIL: No. of rows mismatch" , "\nNo. of rows my_df: ", nrow(my_df_u) , "\nNo. of rows merged_df3: ", nrow(merged_df3)) quit() } # counting NAs in AF, OR cols in merged_df3 # this is because mcsm has no AF, OR cols, # so you cannot count NAs if (identical(sum(is.na(merged_df3$or_kin)) , sum(is.na(merged_df3$pwald_kin)) , sum(is.na(merged_df3$af_kin)))){ cat("PASS: NA count match for OR, pvalue and AF\n") na_count_df3 = sum(is.na(merged_df3$af_kin)) cat("No. of NAs: ", sum(is.na(merged_df3$or_kin))) } else{ cat("FAIL: NA count mismatch" , "\nNA in OR: ", sum(is.na(merged_df3$or_kin)) , "\nNA in pvalue: ", sum(is.na(merged_df3$pwald_kin)) , "\nNA in AF:", sum(is.na(merged_df3$af_kin))) } # check if the same or and afs are missing for if ( identical( which(is.na(merged_df2$or_mychisq)), which(is.na(merged_df2$or_kin))) && identical( which(is.na(merged_df2$af)), which(is.na(merged_df2$af_kin))) && identical( which(is.na(merged_df2$pval_fisher)), which(is.na(merged_df2$pwald_kin))) ){ cat('PASS: Indices match for mychisq and kin ors missing values') } else{ cat('Index mismatch: mychisq and kin ors missing indices match') quit() } ########################### # 4: merging two dfs: without NA ########################### ######### # merge 4a (merged_df2_comp): same as merge 1 but excluding NA ######### cat("Merging dfs without any NAs: big df (1-many relationship b/w id & mut)" ,"\nlinking col: Mutationinforamtion" ,"\nfilename: merged_df2_comp") if ( identical( which(is.na(merged_df2$af)), which(is.na(merged_df2$af_kin))) ){ print('mychisq and kin ors missing indices match. Procedding with omitting NAs') na_count_df2 = sum(is.na(merged_df2$af)) merged_df2_comp = merged_df2[!is.na(merged_df2$af),] # sanity check: no +-1 gymnastics cat("Checking nrows in merged_df2_comp") if(nrow(merged_df2_comp) == (nrow(merged_df2) - na_count_df2)){ cat("\nPASS: No. of rows match" ,"\nDim of merged_df2_comp: " ,"\nExpected no. of rows: ", nrow(merged_df2) - na_count_df2 , "\nNo. of rows: ", nrow(merged_df2_comp) , "\nNo. of cols: ", ncol(merged_df2_comp)) }else{ cat("FAIL: No. of rows mismatch" ,"\nExpected no. of rows: ", nrow(merged_df2) - na_count_df2 ,"\nGot no. of rows: ", nrow(merged_df2_comp)) } }else{ print('Index mismatch for mychisq and kin ors. Aborting NA ommission') } ######### # merge 4b (merged_df3_comp): remove duplicate mutation information ######### if ( identical( which(is.na(merged_df3$af)), which(is.na(merged_df3$af_kin))) ){ print('mychisq and kin ors missing indices match. Procedding with omitting NAs') na_count_df3 = sum(is.na(merged_df3$af)) #merged_df3_comp = merged_df3_comp[!duplicated(merged_df3_comp$mutationinformation),] # a way merged_df3_comp = merged_df3[!is.na(merged_df3$af),] # another way cat("Checking nrows in merged_df3_comp") if(nrow(merged_df3_comp) == (nrow(merged_df3) - na_count_df3)){ cat("\nPASS: No. of rows match" ,"\nDim of merged_df3_comp: " ,"\nExpected no. of rows: ", nrow(merged_df3) - na_count_df3 , "\nNo. of rows: ", nrow(merged_df3_comp) , "\nNo. of cols: ", ncol(merged_df3_comp)) }else{ cat("FAIL: No. of rows mismatch" ,"\nExpected no. of rows: ", nrow(merged_df3) - na_count_df3 ,"\nGot no. of rows: ", nrow(merged_df3_comp)) } } else{ print('Index mismatch for mychisq and kin ors. Aborting NA ommission') } # alternate way of deriving merged_df3_comp foo = merged_df3[!is.na(merged_df3$af),] bar = merged_df3_comp[!duplicated(merged_df3_comp$mutationinformation),] # compare dfs: foo and merged_df3_com all.equal(foo, bar) #summary(comparedf(foo, bar)) #=============== end of combining df #============================================================== ################# # OPTIONAL: write ALL 4 output files ################# #outvars = c("merged_df2" # , "merged_df3" # , "merged_df2_comp" # , "merged_df3_comp") #cat("Writing output files: " # , "\nPath:", outdir) #for (i in outvars){ # out_filename = paste0(i, ".csv") # outfile = paste0(outdir, "/", out_filename) # cat("Writing output file:" # ,"\nFilename: ", out_filename,"\n") # write.csv(get(i), outfile, row.names = FALSE) # cat("Finished writing: ", outfile # , "\nNo. of rows: ", nrow(get(i)) # , "\nNo. of cols: ", ncol(get(i)), "\n") #} #************************* # clear variables rm(foo, bar, gene_metadata , in_filename_params, infile_params, merging_cols , merged_df2v2, merged_df2v3) #============================= end of script