#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jun 29 19:44:06 2022 @author: tanu """ import sys, os import pandas as pd import numpy as np import re from copy import deepcopy from sklearn import linear_model from sklearn import datasets from collections import Counter from sklearn.linear_model import LogisticRegression, LogisticRegressionCV from sklearn.linear_model import RidgeClassifier, RidgeClassifierCV, SGDClassifier, PassiveAggressiveClassifier from sklearn.naive_bayes import BernoulliNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.gaussian_process import GaussianProcessClassifier, kernels from sklearn.gaussian_process.kernels import RBF, DotProduct, Matern, RationalQuadratic, WhiteKernel from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis from sklearn.neural_network import MLPClassifier from sklearn.svm import SVC from xgboost import XGBClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder from sklearn.compose import ColumnTransformer from sklearn.compose import make_column_transformer from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report # added from sklearn.model_selection import train_test_split, cross_validate, cross_val_score, LeaveOneOut, KFold, RepeatedKFold, cross_val_predict from sklearn.model_selection import train_test_split, cross_validate, cross_val_score from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold from sklearn.pipeline import Pipeline, make_pipeline from sklearn.feature_selection import RFE, RFECV import itertools import seaborn as sns import matplotlib.pyplot as plt from statistics import mean, stdev, median, mode from imblearn.over_sampling import RandomOverSampler from imblearn.under_sampling import RandomUnderSampler from imblearn.over_sampling import SMOTE from sklearn.datasets import make_classification from imblearn.combine import SMOTEENN from imblearn.combine import SMOTETomek from imblearn.over_sampling import SMOTENC from imblearn.under_sampling import EditedNearestNeighbours from imblearn.under_sampling import RepeatedEditedNearestNeighbours from sklearn.model_selection import GridSearchCV from sklearn.base import BaseEstimator from sklearn.impute import KNNImputer as KNN import json import argparse import re import itertools from sklearn.model_selection import LeaveOneGroupOut from boruta import BorutaPy ############################################################################### # homedir = os.path.expanduser("~") # sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions') # sys.path ############################################################################### #outdir = "/home/tanu/git/LSHTM_ML/output/feature_selection/" #==================== # Import ML functions #==================== #from ml_data_combined import * #from MultClfs import * #from GetMLData import * #from SplitTTS import * #skf_cv = StratifiedKFold(n_splits = 10 , shuffle = True, random_state = 42) #logo = LeaveOneGroupOut() ######################################################################## # COMPLETE data: No tts_split ######################################################################## #%% def CMLogoSkf_FS(cm_input_df , all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"] , bts_genes = ["embb", "katg", "rpob", "pnca", "gid"] , cols_to_drop = ['dst', 'dst_mode', 'gene_name'] , target_var = 'dst_mode' , gene_group = 'gene_name' , std_gene_omit = [] , var_type = ['numerical', 'categorical','mixed'] ): n_jobs = os.cpu_count() njobs = {'n_jobs': n_jobs } rs = {'random_state': 42} cm_gene_featuresD = {} for bts_gene in bts_genes: print('\n BTS gene:', bts_gene) if not std_gene_omit: training_genesL = ['alr'] else: training_genesL = [] tr_gene_omit = std_gene_omit + [bts_gene] n_tr_genes = (len(bts_genes) - (len(std_gene_omit))) #n_total_genes = (len(bts_genes) - len(std_gene_omit)) n_total_genes = len(all_genes) training_genesL = training_genesL + list(set(bts_genes) - set(tr_gene_omit)) #training_genesL = [element for element in bts_genes if element not in tr_gene_omit] print('\nTotal genes: ', n_total_genes ,'\nTraining on:', n_tr_genes ,'\nTraining on genes:', training_genesL , '\nOmitted genes:', tr_gene_omit , '\nBlind test gene:', bts_gene) print('\nDim of data:', cm_input_df.shape) tts_split_type = "logo_skf_BT_" + bts_gene #------- # training #------ cm_training_df = cm_input_df[~cm_input_df['gene_name'].isin(tr_gene_omit)] cm_X = cm_training_df.drop(cols_to_drop, axis=1, inplace=False) #cm_y = cm_training_df.loc[:,'dst_mode'] cm_y = cm_training_df.loc[:, target_var] gene_group = cm_training_df.loc[:,'gene_name'] print('\nTraining data dim:', cm_X.shape , '\nTraining Target dim:', cm_y.shape) if all(cm_X.columns.isin(cols_to_drop) == False): print('\nChecked training df does NOT have Target var') else: sys.exit('\nFAIL: training data contains Target var') #--------------- # BTS: genes #--------------- cm_test_df = cm_input_df[cm_input_df['gene_name'].isin([bts_gene])] cm_bts_X = cm_test_df.drop(cols_to_drop, axis = 1, inplace = False) #cm_bts_y = cm_test_df.loc[:, 'dst_mode'] cm_bts_y = cm_test_df.loc[:, target_var] print('\nTEST data dim:' , cm_bts_X.shape , '\nTEST Target dim:' , cm_bts_y.shape) print("Running Multiple models on LOGO with SKF") # REASSIGN for simplicity # X X_train = cm_X.copy() X_test = cm_bts_X.copy() X_train.shape X_test.shape # Y y_train = cm_y.copy() y_test = cm_bts_y.copy() y_train.shape y_test.shape ############################################################################## #PREPROCESS numerical_ix = X_train.select_dtypes(include=['int64', 'float64']).columns numerical_ix print("\nNo. of numerical indices:", len(numerical_ix)) categorical_ix = X_train.select_dtypes(include=['object', 'bool']).columns categorical_ix print("\nNo. of categorical indices:", len(categorical_ix)) #====================================================== # Determine preprocessing steps ~ var_type #====================================================== if var_type == 'numerical': t = [('num', MinMaxScaler(), numerical_ix)] if var_type == 'categorical': t = [('cat', OneHotEncoder(), categorical_ix)] if var_type == 'mixed': t = [('num', MinMaxScaler(), numerical_ix) , ('cat', OneHotEncoder(), categorical_ix)] col_transform = ColumnTransformer(transformers = t , remainder='passthrough') col_transform.fit(X_train) col_transform.get_feature_names_out() var_type_colnames = col_transform.get_feature_names_out() var_type_colnames = pd.Index(var_type_colnames) if var_type == 'mixed': print('\nVariable type is:', var_type , '\nNo. of columns in input_df:', len(X_train.columns) , '\nNo. of columns post one hot encoder:', len(var_type_colnames)) else: print('\nNo. of columns in input_df:', len(cm_input_df.columns)) ############################################################################## # FS: Random Forest + Boruta X_train = col_transform.fit_transform(X_train) X_test = col_transform.fit_transform(X_test) fs_clf = "RandomForestClassifier" rf_all_features = RandomForestClassifier(n_estimators=1000, max_depth=5 , **rs, **njobs) # fit rf_all_features.fit(np.array(X_train), np.array(y_train)) print("RF, baseline MCC:", matthews_corrcoef(y_test, rf_all_features.predict(X_test))) # BORUTA and fit boruta_selector = BorutaPy(rf_all_features,**rs, verbose = 3) boruta_selector.fit(np.array(X_train), np.array(y_train)) # Get chosen features print("Ranking: ", boruta_selector.ranking_) print("No. of significant features: ", boruta_selector.n_features_) X_important_train = boruta_selector.transform(np.array(X_train)) X_important_test = boruta_selector.transform(np.array(X_test)) # just retesting with selected features on RF itselfs rf_all_features.fit(X_important_train, y_train) print("RF, Boruta MCC:", matthews_corrcoef(y_test, rf_all_features.predict(X_important_test))) selected_rf_features = pd.DataFrame({'Feature':list(var_type_colnames), 'Ranking':boruta_selector.ranking_}) sel_rf_features_sorted = selected_rf_features.sort_values(by='Ranking') sel_features = var_type_colnames[boruta_selector.support_] cm_gene_featuresD.update({bts_gene: { "sel_features": sel_features , "fs_ranking" : sel_rf_features_sorted , "fs_model_name": fs_clf } } ) return(cm_gene_featuresD)