#!/usr/bin/env Rscript ########################################################### # TASK: To combine mcsm combined file and meta data. # This script is sourced by other .R scripts for plotting. ########################################################### # load libraries and functions #source("Header_TT.R") #========================================================== # combining_dfs_plotting(): # input args ## df1_mcsm_comb: _meta_data.csv ## df2_gene_metadata: _all_params.csv ## lig_dist_cutoff = 10, cut off distance # Output: returns # 1) large combined df including NAs for AF, OR,etc # Dim: same no. of rows as gene associated meta_data_with_AFandOR # 2) small combined df including NAs for AF, OR, etc. # Dim: same as mcsm data # 3) large combined df excluding NAs # Dim: dim(#1) - na_count_df2 # 4) small combined df excluding NAs # Dim: dim(#2) - na_count_df3 # 5) LIGAND large combined df including NAs for AF, OR,etc # Dim: dim() # 6) LIGAND small combined df excluding NAs # Dim: dim() #========================================================== combining_dfs_plotting <- function( my_df_u , gene_metadata , lig_dist_colname = 'ligand_distance' , lig_dist_cutoff = 10){ # counting NAs in AF, OR cols # or_mychisq if (identical(sum(is.na(my_df_u$or_mychisq)) , sum(is.na(my_df_u$pval_fisher)) , sum(is.na(my_df_u$af)))){ cat("\nPASS: NA count match for OR, pvalue and AF\n") na_count = sum(is.na(my_df_u$af)) cat("\nNo. of NAs: ", sum(is.na(my_df_u$or_mychisq))) } else{ cat("\nFAIL: NA count mismatch" , "\nNA in OR: ", sum(is.na(my_df_u$or_mychisq)) , "\nNA in pvalue: ", sum(is.na(my_df_u$pval_fisher)) , "\nNA in AF:", sum(is.na(my_df_u$af))) } # or kin if (identical(sum(is.na(my_df_u$or_kin)) , sum(is.na(my_df_u$pwald_kin)) , sum(is.na(my_df_u$af_kin)))){ cat("\nPASS: NA count match for OR, pvalue and AF\n from Kinship matrix calculations") na_count = sum(is.na(my_df_u$af_kin)) cat("\nNo. of NAs: ", sum(is.na(my_df_u$or_kin))) } else{ cat("\nFAIL: NA count mismatch" , "\nNA in OR: ", sum(is.na(my_df_u$or_kin)) , "\nNA in pvalue: ", sum(is.na(my_df_u$pwald_kin)) , "\nNA in AF:", sum(is.na(my_df_u$af_kin))) } str(gene_metadata) ################################################################### # combining: PS ################################################################### # sort by position (same as my_df) head(gene_metadata$position) gene_metadata = gene_metadata[order(gene_metadata$position),] head(gene_metadata$position) #========================= # Merge 1: merged_df2 # dfs with NAs in ORs #========================= head(my_df_u$mutationinformation) head(gene_metadata$mutationinformation) # Find common columns b/w two df merging_cols = intersect(colnames(my_df_u), colnames(gene_metadata)) cat(paste0("\nMerging dfs with NAs: big df (1-many relationship b/w id & mut)" , "\nNo. of merging cols:", length(merging_cols) , "\nMerging columns identified:")) print(merging_cols) # using all common cols create confusion, so pick one! # merging_cols = merging_cols[[1]] merging_cols = 'mutationinformation' cat("\nLinking column being used: mutationinformation") # important checks! table(nchar(my_df_u$mutationinformation)) table(nchar(my_df_u$wild_type)) table(nchar(my_df_u$mutant_type)) table(nchar(my_df_u$position)) # all.y because x might contain non-structural positions! merged_df2 = merge(x = gene_metadata , y = my_df_u , by = merging_cols , all.y = T) cat("\nDim of merged_df2: ", dim(merged_df2)) # Remove duplicate columns dup_cols = names(merged_df2)[grepl("\\.x$|\\.y$", names(merged_df2))] cat("\nNo. of duplicate cols:", length(dup_cols)) check_df_cols = merged_df2[dup_cols] identical(check_df_cols$wild_type.x, check_df_cols$wild_type.y) identical(check_df_cols$position.x, check_df_cols$position.y) identical(check_df_cols$mutant_type.x, check_df_cols$mutant_type.y) # False: because some of the ones with OR don't have mutation identical(check_df_cols$mutation.x, check_df_cols$mutation.y) cols_to_drop = names(merged_df2)[grepl("\\.y",names(merged_df2))] cat("\nNo. of cols to drop:", length(cols_to_drop)) # Drop duplicate columns merged_df2 = merged_df2[,!(names(merged_df2)%in%cols_to_drop)] # Drop the '.x' suffix in the colnames names(merged_df2)[grepl("\\.x$|\\.y$", names(merged_df2))] colnames(merged_df2) <- gsub("\\.x$", "", colnames(merged_df2)) names(merged_df2)[grepl("\\.x$|\\.y$", names(merged_df2))] head(merged_df2$position) # sanity check cat("\nChecking nrows in merged_df2") if(nrow(gene_metadata) == nrow(merged_df2)){ cat("\nPASS: nrow(merged_df2) = nrow (gene associated gene_metadata)" ,"\nExpected no. of rows: ",nrow(gene_metadata) ,"\nGot no. of rows: ", nrow(merged_df2)) } else{ cat("\nFAIL: nrow(merged_df2)!= nrow(gene associated gene_metadata)" , "\nExpected no. of rows after merge: ", nrow(gene_metadata) , "\nGot no. of rows: ", nrow(merged_df2) , "\nFinding discrepancy") merged_muts_u = unique(merged_df2$mutationinformation) meta_muts_u = unique(gene_metadata$mutationinformation) # find the index where it differs unique(meta_muts_u[! meta_muts_u %in% merged_muts_u]) quit() } # Quick formatting: pretty labels #----------------------- # mutation_info_labels #----------------------- merged_df2$mutation_info_labels = ifelse(merged_df2$mutation_info == dr_muts_col , "DM", "OM") merged_df2$mutation_info_labels = factor(merged_df2$mutation_info_labels) #----------------------- # lineage labels #----------------------- merged_df2$lineage_labels = gsub("lineage", "L", merged_df2$lineage) merged_df2$lineage_labels = factor(merged_df2$lineage_labels, c("L1" , "L2" , "L3" , "L4" , "L5" , "L6" , "L7" , "LBOV" , "L1;L2" , "L1;L3" , "L1;L4" , "L2;L3" , "L2;L3;L4" , "L2;L4" , "L2;L6" , "L2;LBOV" , "L3;L4" , "L4;L6" , "L4;L7" , "")) #================================================================= # Merge 2: merged_df3 # dfs with NAs in ORs # # Cannot trust lineage, country from this df as the same mutation # can have many different lineages # but this should be good for the numerical corr plots #================================================================== # remove duplicated mutations cat("\nMerging dfs without NAs: small df (removing muts with no AF|OR associated)" ,"\nCannot trust lineage info from this" ,"\nlinking col: mutationinforamtion" ,"\nfilename: merged_df3") merged_df3 = merged_df2[!duplicated(merged_df2$mutationinformation),] head(merged_df3$position); tail(merged_df3$position) # should be sorted # sanity check cat("\nChecking nrows in merged_df3") if(nrow(my_df_u) == nrow(merged_df3)){ cat("\nPASS: No. of rows match with my_df" ,"\nExpected no. of rows: ", nrow(my_df_u) ,"\nGot no. of rows: ", nrow(merged_df3)) } else { cat("\nFAIL: No. of rows mismatch" , "\nNo. of rows my_df: ", nrow(my_df_u) , "\nNo. of rows merged_df3: ", nrow(merged_df3)) quit() } # counting NAs in AF, OR cols in merged_df3 # this is because mcsm has no AF, OR cols, # so you cannot count NAs if (identical(sum(is.na(merged_df3$or_kin)) , sum(is.na(merged_df3$pwald_kin)) , sum(is.na(merged_df3$af_kin)))){ cat("\nPASS: NA count match for OR, pvalue and AF\n") na_count_df3 = sum(is.na(merged_df3$af_kin)) cat("\nNo. of NAs: ", sum(is.na(merged_df3$or_kin))) } else{ cat("\nFAIL: NA count mismatch" , "\nNA in OR: ", sum(is.na(merged_df3$or_kin)) , "\nNA in pvalue: ", sum(is.na(merged_df3$pwald_kin)) , "\nNA in AF:", sum(is.na(merged_df3$af_kin))) } #=================================================== # Merge3: merged_df2_comp # same as merge 1 but excluding NAs from ORs, etc. #==================================================== cat("\nMerging dfs without any NAs: big df (1-many relationship b/w id & mut)" ,"\nfilename: merged_df2_comp") na_count_df2 = sum(is.na(merged_df2$af)) merged_df2_comp = merged_df2[!is.na(merged_df2$af),] # sanity check: no +-1 gymnastics cat("\nChecking nrows in merged_df2_comp") if(nrow(merged_df2_comp) == (nrow(merged_df2) - na_count_df2)){ cat("\nPASS: No. of rows match" ,"\nDim of merged_df2_comp: " ,"\nExpected no. of rows: ", nrow(merged_df2) - na_count_df2 , "\nNo. of rows: ", nrow(merged_df2_comp) , "\nNo. of cols: ", ncol(merged_df2_comp)) }else{ cat("\nFAIL: No. of rows mismatch" ,"\nExpected no. of rows: ", nrow(merged_df2) - na_count_df2 ,"\nGot no. of rows: ", nrow(merged_df2_comp)) } #====================================================== # Merge4: merged_df3_comp # same as merge 2 but excluding NAs from ORs, etc or # remove duplicate mutation information #======================================================= na_count_df3 = sum(is.na(merged_df3$af)) #merged_df3_comp = merged_df3_comp[!duplicated(merged_df3_comp$mutationinformation),] # a way merged_df3_comp = merged_df3[!is.na(merged_df3$af),] # another way cat("\nChecking nrows in merged_df3_comp") if(nrow(merged_df3_comp) == (nrow(merged_df3) - na_count_df3)){ cat("\nPASS: No. of rows match" ,"\nDim of merged_df3_comp: " ,"\nExpected no. of rows: ", nrow(merged_df3) - na_count_df3 , "\nNo. of rows: ", nrow(merged_df3_comp) , "\nNo. of cols: ", ncol(merged_df3_comp)) }else{ cat("\nFAIL: No. of rows mismatch" ,"\nExpected no. of rows: ", nrow(merged_df3) - na_count_df3 ,"\nGot no. of rows: ", nrow(merged_df3_comp)) } # alternate way of deriving merged_df3_comp foo = merged_df3[!is.na(merged_df3$af),] bar = merged_df3_comp[!duplicated(merged_df3_comp$mutationinformation),] # compare dfs: foo and merged_df3_com all.equal(foo, bar) #summary(comparedf(foo, bar)) cat("\n------------------------" , "\nSummary of created dfs:" , "\n------------------------" , "\n1) Dim of merged_df2: " , nrow(merged_df2), "," , ncol(merged_df2) , "\n2) Dim of merged_df2_comp: " , nrow(merged_df2_comp), "," , ncol(merged_df2_comp) , "\n3) Dim of merged_df3: " , nrow(merged_df3), "," , ncol(merged_df3) , "\n4) Dim of merged_df3_comp: " , nrow(merged_df3_comp), "," , ncol(merged_df3_comp)) ##################################################################### # Combining: LIG ##################################################################### #============ # Merges 5-8 #============ cat("\n==========================================" , "\nStarting filtering for mcsm ligand df" , "\n===========================================") if (lig_dist_colname%in%names(my_df_u)){ cat("\nFiltering column: ", lig_dist_colname , "\nCut off criteria: ", lig_dist_cutoff, "Angstroms") df_lig = my_df_u[my_df_u[[lig_dist_colname]] < lig_dist_cutoff,] #merged_df2_lig = merged_df2[merged_df2$ligand_distance