#============================================ # TASK: To calculate Allele Frequency and # Odds Ratio from master data # and add the calculated params to meta_data extracted from # pnca_data_extraction.py #=========================================== homedir = '~' getwd() #setwd('~/git/LSHTM_analysis/meta_data_analysis') setwd(paste0(homedir, '/', 'git/LSHTM_analysis/meta_data_analysis')) getwd() #%% variable assignment: input and output paths & filenames drug = 'pyrazinamide' gene = 'pncA' gene_match = paste0(gene,'_p.') print(gene_match) #======= # input dir #======= # file1: Raw data #indir = 'git/Data/pyrazinamide/input/original' indir = paste0('git/Data', '/', drug, '/', 'input/original') in_filename = 'original_tanushree_data_v2.csv' infile = paste0(homedir, '/', indir, '/', in_filename) print(paste0('Reading infile:', ' ', infile) ) # file2: file to extract valid snps and add calcs to: pnca_metadata.csv {outfile3 from data extraction script} indir_metadata = paste0('git/Data', '/', drug, '/', 'output') in_filename_metadata = 'pnca_metadata.csv' infile_metadata = paste0(homedir, '/', indir_metadata, '/', in_filename_metadata) print(paste0('Reading metadata infile:', infile_metadata)) #========= # output dir #========= # output filename in respective section at the time of outputting files #outdir = 'git/Data/pyrazinamide/output' outdir = paste0('git/Data', '/', drug, '/', 'output') out_filename = paste0(tolower(gene),'_', 'meta_data_with_AFandOR.csv') outfile = paste0(homedir, '/', outdir, '/', out_filename) print(paste0('Output file with full path:', outfile)) #%% end of variable assignment for input and output files #=============== # Step 1: Read master/raw data stored in Data/ #=============== raw_data_all = read.csv(infile, stringsAsFactors = F) raw_data = raw_data_all[,c("id" , "pyrazinamide" , "dr_mutations_pyrazinamide" , "other_mutations_pyrazinamide")] rm(raw_data_all) rm(indir, in_filename, infile) ##### # 1a: exclude na ##### raw_data = raw_data[!is.na(raw_data$pyrazinamide),] total_samples = length(unique(raw_data$id)) print(paste0('Total samples without NA in', ' ', drug, 'is:', total_samples)) # sanity check: should be true is.numeric(total_samples) ##### # 1b: combine the two mutation columns ##### raw_data$all_mutations_pyrazinamide = paste(raw_data$dr_mutations_pyrazinamide , raw_data$other_mutations_pyrazinamide) head(raw_data$all_mutations_pyrazinamide) ##### # 1c: create yet another column that contains all the mutations but in lower case ##### raw_data$all_muts_pnca = tolower(raw_data$all_mutations_pyrazinamide) # sanity checks #table(grepl("pnca_p",raw_data$all_muts_pnca)) print(paste0('converting gene match:', gene_match, ' ', 'to lowercase')) gene_match = tolower(gene_match) table(grepl(gene_match,raw_data$all_muts_pnca)) # sanity check: should be TRUE #sum(table(grepl("pnca_p",raw_data$all_muts_pnca))) == total_samples sum(table(grepl(gene_match,raw_data$all_muts_pnca))) == total_samples # set up variables: can be used for logistic regression as well i = "pnca_p.ala134gly" # has a NA, should NOT exist table(grepl(i,raw_data$all_muts_pnca)) i = "pnca_p.trp68gly" table(grepl(i,raw_data$all_muts_pnca)) mut = grepl(i,raw_data$all_muts_pnca) dst = raw_data$pyrazinamide table(mut, dst) #chisq.test(table(mut,dst)) #fisher.test(table(mut, dst)) #table(mut) #=============== # Step 2: Read valid snps for which OR can be calculated (infile_comp_snps.csv) #=============== print(paste0('Reading metadata infile:', infile_metadata)) pnca_metadata = read.csv(infile_metadata # , file.choose() , stringsAsFactors = F , header = T) # clear variables rm(homedir, in_filename, indir, infile) rm(indir_metadata, infile_metadata, in_filename_metadata) # count na in pyrazinamide column tot_pza_na = sum(is.na(pnca_metadata$pyrazinamide)) expected_rows = nrow(pnca_metadata) - tot_pza_na # drop na from the pyrazinamide colum pnca_snps_or = pnca_metadata[!is.na(pnca_metadata$pyrazinamide),] # sanity check if(nrow(pnca_snps_or) == expected_rows){ print('PASS: no. of rows match with expected_rows') } else{ print('FAIL: nrows mismatch.') } # extract unique snps to iterate over for AF and OR calcs pnca_snps_unique = unique(pnca_snps_or$mutation) print(paste0('Total no. of distinct comp snps to perform OR calcs: ', length(pnca_snps_unique))) # Define OR function x = as.numeric(mut) y = dst or = function(x,y){ tab = as.matrix(table(x,y)) a = tab[2,2] if (a==0){ a<-0.5} b = tab[2,1] if (b==0){ b<-0.5} c = tab[1,2] if (c==0){ c<-0.5} d = tab[1,1] if (d==0){ d<-0.5} (a/b)/(c/d) } dst = raw_data$pyrazinamide ors = sapply(pnca_snps_unique,function(m){ mut = grepl(m,raw_data$all_muts_pnca) or(mut,dst) }) ors pvals = sapply(pnca_snps_unique,function(m){ mut = grepl(m,raw_data$all_muts_pnca) fisher.test(mut,dst)$p.value }) pvals afs = sapply(pnca_snps_unique,function(m){ mut = grepl(m,raw_data$all_muts_pnca) mean(mut) }) afs # check ..hmmm afs['pnca_p.trp68gly'] afs['pnca_p.gln10pro'] afs['pnca_p.leu4ser'] plot(density(log(ors))) plot(-log10(pvals)) hist(log(ors) , breaks = 100 ) # FIXME: could be good to add a sanity check if (table(names(ors) == names(pvals)) & table(names(ors) == names(afs)) & table(names(pvals) == names(afs)) == length(pnca_snps_unique)){ print('PASS: names of ors, pvals and afs match: proceed with combining into a single df') } else{ print('FAIL: names of ors, pvals and afs mismatch') } # combine comb_AF_and_OR = data.frame(ors, pvals, afs) head(rownames(comb_AF_and_OR)) # add rownames of comb_AF_and_OR as an extra column 'mutation' to allow merging based on this column comb_AF_and_OR$mutation = rownames(comb_AF_and_OR) # sanity check if (table(rownames(comb_AF_and_OR) == comb_AF_and_OR$mutation)){ print('PASS: rownames and mutaion col values match') }else{ print('FAIL: rownames and mutation col values mismatch') } ############ # Merge 1: ########### df1 = pnca_metadata df2 = comb_AF_and_OR head(df1$mutation); head(df2$mutation) # FIXME: newlines print(paste0('merging two dfs: ' ,'\ndf1 (big df i.e. meta data) nrows: ', nrow(df1) ,'\ndf2 (small df i.e af, or, pval) nrows: ', nrow(df2) , 'expected rows in merged df: ', nrow(df1), 'expected cols in merged_df: ', (ncol(df1) + ncol(df2) - 1))) merged_df = merge(df1 # big file , df2 # small (afor file) , by = "mutation" , all.x = T) # because you want all the entries of the meta data # sanity check if(ncol(merged_df) == (ncol(df1) + ncol(df2) - 1)){ print(paste0('PASS: no. of cols is as expected: ', ncol(merged_df))) } else{ print('FAIL: no.of cols mistmatch') } # quick check i = "pnca_p.ala134gly" # has all NAs in pyrazinamide, should be NA in ors, etc. merged_df[merged_df$mutation == i,] # count na in each column na_count = sapply(merged_df, function(y) sum(length(which(is.na(y))))); na_count # only some or and Af should be NA #Row.names ors pvals afs #63 63 63 63 # reassign custom colnames colnames(merged_df)[colnames(merged_df)== "ors"] <- "OR" colnames(merged_df)[colnames(merged_df)== "afs"] <- "AF" colnames(merged_df)[colnames(merged_df)== "pvals"] <- "pvalue" colnames(merged_df) # add log OR and neglog pvalue merged_df$logor = log(merged_df$OR) is.numeric(merged_df$logor) merged_df$neglog10pvalue = -log10(merged_df$pvalue) is.numeric(merged_df$neglog10pvalue) merged_df$AF_percent = merged_df$AF*100 is.numeric(merged_df$AF_percent) # check AFs #i = 'pnca_p.trp68gly' i = 'pnca_p.gln10pro' #i = 'pnca_p.leu4ser' merged_df[merged_df$mutation == i,] # FIXME: harcoding (beware!), NOT FATAL though! ncol_added = 3 print(paste0('Added', ncol_added, ' ', 'more cols to merged_df i.e log10 OR and -log10 P-val: ' , 'no. of cols in merged_df now: ', ncol(merged_df))) #%% write file out: pnca_meta_data_with_AFandOR print(paste0('writing output file in: ' , 'Filename: ', out_filename , 'Path:', outdir)) write.csv(merged_df, outfile , row.names = F) print(paste0('Finished writing:', out_filename, '\nExpected no. of cols:', ncol(merged_df))) print('======================================================================') rm(out_filename)