#!/usr/bin/env Rscript ######################################################### # TASK: Corr plots for PS and Lig # Output: 1 svg #======================================================================= # working dir and loading libraries getwd() setwd("~/git/LSHTM_analysis/scripts/plotting/") getwd() source("Header_TT.R") require(cowplot) source("combining_dfs_plotting.R") # FIXME: add extra from other plots here # should return the following dfs, directories and variables #======= # output #======= # can't combine by cowplot because not ggplots #corr_plot_combined = "corr_combined.svg" #plot_corr_plot_combined = paste0(plotdir,"/", corr_plot_combined) # PS foldx corr_foldx = "corr_adjusted_foldx.svg" plot_corr_foldx = paste0(plotdir,"/", corr_foldx) #################################################################### # end of loading libraries and functions # ######################################################################## #%%%%%%%%%%%%%%%%%%%%%%%%% df_ps = merged_df3 #%%%%%%%%%%%%%%%%%%%%%%%%% rm( merged_df2, merged_df2_comp, merged_df2_lig , merged_df2_comp_lig , merged_df3_comp, merged_df3_comp_lig , my_df_u, my_df_u_lig) ######################################################################## # end of data extraction and cleaning for plots # ######################################################################## #=========================== # Data for Correlation plots:foldx #=========================== #============================ # adding foldx scaled values # scale data b/w -1 and 1 #============================ n = which(colnames(df_ps) == "ddg"); n my_min = min(df_ps[,n]); my_min my_max = max(df_ps[,n]); my_max df_ps$foldx_scaled = ifelse(df_ps[,n] < 0 , df_ps[,n]/abs(my_min) , df_ps[,n]/my_max) # sanity check my_min = min(df_ps$foldx_scaled); my_min my_max = max(df_ps$foldx_scaled); my_max if (my_min == -1 && my_max == 1){ cat("PASS: foldx ddg successfully scaled b/w -1 and 1" , "\nProceeding with assigning foldx outcome category") }else{ cat("FAIL: could not scale foldx ddg values" , "Aborting!") } #================================ # adding foldx outcome category # ddg<0 = "Stabilising" (-ve) #================================= c1 = table(df_ps$ddg < 0) df_ps$foldx_outcome = ifelse(df_ps$ddg < 0, "Stabilising", "Destabilising") c2 = table(df_ps$ddg < 0) if ( all(c1 == c2) ){ cat("PASS: foldx outcome successfully created") }else{ cat("FAIL: foldx outcome could not be created. Aborting!") exit() } table(df_ps$foldx_outcome) #====================== # adding log cols #====================== df_ps$log10_or_mychisq = log10(df_ps$or_mychisq) df_ps$neglog_pval_fisher = -log10(df_ps$pval_fisher) df_ps$log10_or_kin = log10(df_ps$or_kin) df_ps$neglog_pwald_kin = -log10(df_ps$pwald_kin) # subset data to generate pairwise correlations cols_to_select_foldx = c("foldx_scaled" , "duet_scaled" , "log10_or_mychisq" , "neglog_pval_fisher" , "log10_or_kin" , "neglog_pwald_kin" , "af" , "foldx_outcome" , drug) corr_data_foldx = df_ps[, cols_to_select_foldx] dim(corr_data_foldx) #p_italic = substitute(paste("-Log(", italic('P'), ")"));p_italic #p_adjusted_italic = substitute(paste("-Log(", italic('P adjusted'), ")"));p_adjusted_italic # assign nice colnames (for display) my_corr_colnames_foldx = c("Foldx" ,"DUET" , "Log(OR)" , "-Log(P)" , "Log(OR adjusted)" , "-Log(P wald)" , "AF" , "foldx_outcome" , drug) length(my_corr_colnames_foldx) colnames(corr_data_foldx) colnames(corr_data_foldx) <- my_corr_colnames_foldx colnames(corr_data_foldx) #----------------- # generate corr foldx plot #----------------- start = 1 end = which(colnames(corr_data_foldx) == drug); end # should be the last column offset = 1 my_corr_foldx = corr_data_foldx[start:(end-offset)] head(my_corr_foldx) #my_cols = c("#f8766d", "#00bfc4") # deep blue :#007d85 # deep red: #ae301e cat("Corr plot foldx:", plot_corr_foldx) svg(plot_corr_foldx, width = 15, height = 15) OutPlot_foldx= pairs.panels(my_corr_foldx[1:(length(my_corr_foldx)-1)] , method = "spearman" # correlation method , hist.col = "grey" ##00AFBB , density = TRUE # show density plots , ellipses = F # show correlation ellipses , stars = T , rug = F , breaks = "Sturges" , show.points = T , bg = c("#f8766d", "#00bfc4")[unclass(factor(my_corr_foldx$foldx_outcome))] , pch = 21 , jitter = T #, alpha = .05 #, points(pch = 19, col = c("#f8766d", "#00bfc4")) , cex = 3 , cex.axis = 2.5 , cex.labels = 2.1 , cex.cor = 1 , smooth = F ) print(OutPlot_foldx) dev.off()