######################################################### # TASK: To compare OR from master snps # chisq, fisher test and logistic and adjusted logistic ######################################################### getwd() setwd('~/git/LSHTM_analysis/scripts') getwd() #install.packages("logistf") library(logistf) ######################################################### #%% variable assignment: input and output paths & filenames drug = 'pyrazinamide' gene = 'pncA' gene_match = paste0(gene,'_p.') cat(gene_match) #=========== # input and output dirs #=========== datadir = paste0('~/git/Data') indir = paste0(datadir, '/', drug, '/', 'input') outdir = paste0(datadir, '/', drug, '/', 'output') #=========== # input and output files #=========== in_filename = 'original_tanushree_data_v2.csv' #in_filename = 'mtb_gwas_v3.csv' infile = paste0(datadir, '/', in_filename) cat(paste0('Reading infile1: raw snps', ' ', infile) ) # infile2: _gene associated meta snps file to extract valid snps and add calcs to. # This is outfile3 from snps_extraction.py in_filename_metadata = paste0(tolower(gene), '_metadata.csv') infile_metadata = paste0(outdir, '/', in_filename_metadata) cat(paste0('Reading infile2: gene associated metadata:', infile_metadata)) #=========== # output #=========== out_filename = paste0(tolower(gene),'_', 'af_or.csv') outfile = paste0(outdir, '/', out_filename) cat(paste0('Output file with full path:', outfile)) #%% end of variable assignment for input and output files ######################################################### # 1: Read master/raw snps stored in snps/ ##################################################### #=============== # Step 1: read raw snps (all remove entries with NA in pza column) #=============== raw_data_all = read.csv(infile, stringsAsFactors = F) # building cols to extract dr_muts_col = paste0('dr_mutations_', drug) other_muts_col = paste0('other_mutations_', drug) cat('Extracting columns based on variables:\n' , drug , '\n' , dr_muts_col , '\n' , other_muts_col , '\n===============================================================') raw_data = raw_data_all[,c("id" , drug , dr_muts_col , other_muts_col)] rm(raw_data_all) rm(indir, in_filename, infile) #=========== # 1a: exclude na #=========== raw_data = raw_data[!is.na(raw_data[[drug]]),] total_samples = length(unique(raw_data$id)) cat(paste0('Total samples without NA in', ' ', drug, 'is:', total_samples)) # sanity check: should be true is.numeric(total_samples) #=========== # 1b: combine the two mutation columns #=========== #raw_data$all_mutations_pyrazinamide = paste(raw_data$dr_mutations_pyrazinamide, raw_data$other_mutations_pyrazinamide) all_muts_colname = paste0('all_mutations_', drug) raw_data[[all_muts_colname]] = paste(raw_data[[dr_muts_col]], raw_data[[other_muts_col]]) head(raw_data[[all_muts_colname]]) #=========== # 1c: create yet another column that contains all the mutations but in lower case #=========== head(raw_data[[all_muts_colname]]) raw_data$all_muts_gene = tolower(raw_data[[all_muts_colname]]) head(raw_data$all_muts_gene) # sanity checks #table(grepl("gene_p",raw_data$all_muts_gene)) cat(paste0('converting gene match:', gene_match, ' ', 'to lowercase')) gene_match = tolower(gene_match) table(grepl(gene_match,raw_data$all_muts_gene)) # sanity check if(sum(table(grepl(gene_match, raw_data$all_muts_gene))) == total_samples){ cat('PASS: Total no. of samples match') } else{ cat('FAIL: No. of samples mismatch') } ######################################################### # 2: Read valid snps for which OR # can be calculated ######################################################### cat(paste0('Reading metadata infile:', infile_metadata)) gene_metadata = read.csv(infile_metadata #, file.choose() , stringsAsFactors = F , header = T) # clear variables rm(in_filename_metadata, infile_metadata) # count na in pyrazinamide column tot_pza_na = sum(is.na(gene_metadata$pyrazinamide)) expected_rows = nrow(gene_metadata) - tot_pza_na # drop na from the pyrazinamide colum gene_snps_or = gene_metadata[!is.na(gene_metadata[[drug]]),] # sanity check if(nrow(gene_snps_or) == expected_rows){ cat('PASS: no. of rows match with expected_rows') } else{ cat('FAIL: nrows mismatch.') } # extract unique snps to iterate over for AF and OR calcs gene_snps_unique = unique(gene_snps_or$mutation) cat(paste0('Total no. of distinct comp snps to perform OR calcs: ', length(gene_snps_unique))) #===================================== #OR calcs using the following 4 #1) chisq.test #2) fisher #3) modified chisq.test #4) logistic #5) adjusted logistic? #6) kinship (separate script) #====================================== ################# modified chisq OR # Define OR function #x = as.numeric(mut) #y = dst custom_chisq_or = function(x,y){ tab = as.matrix(table(x,y)) a = tab[2,2] if (a==0){ a<-0.5} b = tab[2,1] if (b==0){ b<-0.5} c = tab[1,2] if (c==0){ c<-0.5} d = tab[1,1] if (d==0){ d<-0.5} (a/b)/(c/d) } #======================== # TEST WITH ONE #======================== i = "pnca_p.trp68gly" i = "pnca_p.gln10pro" i = "pnca_p.leu159arg" # IV table(grepl(i,raw_data$all_muts_gene)) mut = grepl(i,raw_data$all_muts_gene) # DV #dst = raw_data$pyrazinamide dst = raw_data[[drug]] # or raw_data[,drug] # 2X2 table table(mut, dst) # CV #c = raw_data$id[mut] c = raw_data$id[grepl(i,raw_data$all_muts_gene)] #sid = grepl(raw_data$id[mut], raw_data$id) # warning #argument 'pattern' has length > 1 and only the first element will be used #grepl(raw_data$id=="ERR2512440", raw_data$id) sid = grepl(paste(c,collapse="|"), raw_data$id) table(sid) # 3X2 table table(mut, dst, sid) #============================ # compare OR chisq.test(table(mut,dst)) chisq.test(table(mut,dst)) $ statistic f = chisq.test(table(mut,dst)) $ statistic chisq.test(dst, mut) $ statistic fisher.test(table(mut, dst)) fisher.test(table(mut, dst))$p.value fisher.test(table(mut, dst))$estimate logistic_chisq_or(mut,dst) # logistic or summary(model<-glm(dst ~ mut, family = binomial)) or_logistic = exp(summary(model)$coefficients[2,1]); print(or_logistic) pval_logistic_maxit = summary(model)$coefficients[2,4]; print(pval_logistic_maxit) # extract SE of the logistic model for a given snp logistic_se = summary(model)$coefficients[2,2] print(paste0('SE:', logistic_se)) # extract Z of the logistic model for a given snp logistic_zval = summary(model)$coefficients[2,3] print(paste0('Z-value:', logistic_zval)) # extract confint interval of snp (2 steps, since the output is a named number) ci_mod = exp(confint(model))[2,] print(paste0('CI:', ci_mod)) #logistic_ci = paste(ci_mod[["2.5 %"]], ",", ci_mod[["97.5 %"]]) logistic_ci_lower = ci_mod[["2.5 %"]] logistic_ci_upper = ci_mod[["97.5 %"]] print(paste0('CI_lower:', logistic_ci_lower)) print(paste0('CI_upper:', logistic_ci_upper)) # adjusted logistic or: doesn't seem to make a difference summary(model2<-glm(dst ~ mut + sid, family = binomial)) or_logistic2 = exp(summary(model2)$coefficients[2,1]); print(or_logistic2) pval_logistic2 = summary(model2)$coefficients[2,4]; print(pval_logistic2) #============ looping with sapply ##################### # iterate: subset ##################### snps_test = c("pnca_p.trp68gly", "pnca_p.leu4ser", "pnca_p.leu159arg","pnca_p.his57arg" ) snps = snps_test[1:4] snps ors = sapply(snps,function(m){ mut = grepl(m,raw_data$all_muts_gene) logistic_chisq_or(mut,dst) }) ors pvals = sapply(snps,function(m){ mut = grepl(m,raw_data$all_muts_gene) fisher.test(mut,dst)$p.value }) pvals afs = sapply(snps,function(m){ mut = grepl(m,raw_data$all_muts_gene) mean(mut) }) afs ## logistic or ors_logistic = sapply(snps,function(m){ mut = grepl(m,raw_data$all_muts_gene) model<-glm(dst ~ mut, family = binomial) or_logistic = exp(summary(model)$coefficients[2,1]) }) ors_logistic head(ors_logistic); head(names(ors_logistic)) ## logistic p-value pvals_logistic = sapply(snps,function(m){ mut = grepl(m,raw_data$all_muts_gene) model<-glm(dst ~ mut , family = binomial) pval_logistic = summary(model)$coefficients[2,4] }) head(pvals_logistic); head(names(pvals_logistic)) ## logistic se se_logistic = sapply(snps,function(m){ mut = grepl(m,raw_data$all_muts_gene) model<-glm(dst ~ mut , family = binomial) logistic_se = summary(model)$coefficients[2,2] }) head(se_logistic); head(names(se_logistic)) ## logistic z-value zval_logistic = sapply(gene_snps_unique,function(m){ mut = grepl(m,raw_data$all_muts_gene) model<-glm(dst ~ mut , family = binomial) logistic_zval = summary(model)$coefficients[2,3] }) head(zval_logistic); head(names(zval_logistic)) ## logistic ci - lower bound ci_lb_logistic = sapply(snps,function(m){ mut = grepl(m,raw_data$all_muts_gene) model<-glm(dst ~ mut , family = binomial) ci_mod = exp(confint(model))[2,] logistic_ci_lower = ci_mod[["2.5 %"]] }) head(ci_lb_logistic); head(names(ci_lb_logistic)) ## logistic ci - upper bound ci_ub_logistic = sapply(snps,function(m){ mut = grepl(m,raw_data$all_muts_gene) model<-glm(dst ~ mut , family = binomial) ci_mod = exp(confint(model))[2,] logistic_ci_upper = ci_mod[["97.5 %"]] }) head(ci_ub_logistic); head(names(ci_ub_logistic)) # logistic adj # Doesn't seem to make a difference logistic_ors2 = sapply(snps,function(m){ mut = grepl(m,raw_data$all_muts_gene) c = raw_data$id[mut] sid = grepl(paste(c,collapse="|"), raw_data$id) model2<-glm(dst ~ mut + sid, family = binomial) or_logistic2 = exp(summary(model2)$coefficients[2,1]) #pval_logistic2 = summary(model2)$coefficients[2,4] }) logistic_ors2 or_logistic2; pval_logistic2 head(logistic_ors) #=========================================================== #%% # sapply with multiple values #https://gist.github.com/primaryobjects/33adabc337edd67b4a8d snps_test = c("pnca_p.trp68gly", "pnca_p.leu4ser", "pnca_p.leu159arg","pnca_p.his57arg" ) snps = snps_test[1:4] snps # DV: pyrazinamide 0 or 1 dst = raw_data[[drug]] # yayy works! testdf = data.frame() x = sapply(snps,function(m){ df = data.frame() mut = grepl(m,raw_data$all_muts_gene) model<-glm(dst ~ mut, family = binomial) # allele frequency afs = mean(mut) # logistic model beta_logistic = summary(model)$coefficients[2,1] or_logistic = exp(summary(model)$coefficients[2,1]) print(paste0('logistic OR:', or_logistic)) pval_logistic = summary(model)$coefficients[2,4] print(paste0('logistic pval:', pval_logistic)) se_logistic = summary(model)$coefficients[2,2] zval_logistic = summary(model)$coefficients[2,3] ci_mod = exp(confint(model))[2,] ci_lower_logistic = ci_mod[["2.5 %"]] ci_upper_logistic = ci_mod[["97.5 %"]] # custom_chisq and fisher: OR p-value and CI or_mychisq = custom_chisq_or(dst, mut) or_fisher = fisher.test(dst, mut)$estimate or_fisher = or_fisher[[1]] pval_fisher = fisher.test(dst, mut)$p.value ci_lower_fisher = fisher.test(dst, mut)$conf.int[1] ci_upper_fisher = fisher.test(dst, mut)$conf.int[2] # chi sq estimates estimate_chisq = chisq.test(dst, mut)$statistic; estimate_chisq est_chisq = estimate_chisq[[1]]; print(est_chisq) pval_chisq = chisq.test(dst, mut)$p.value #build a row to append to df row = data.frame(mutation = m , af = afs , beta_logistic = beta_logistic , or_logistic = or_logistic , pval_logistic = pval_logistic , se_logistic = se_logistic , zval_logistic = zval_logistic , ci_low_logistic = ci_lower_logistic , ci_hi_logistic = ci_upper_logistic , or_mychisq = or_mychisq , or_fisher = or_fisher , pval_fisher = pval_fisher , ci_low_fisher= ci_lower_fisher , ci_hi_fisher = ci_upper_fisher , est_chisq = est_chisq , pval_chisq = pval_chisq ) #print(row) testdf <<- rbind(testdf, row) }) write.csv(testdf, 'test_ors.csv') #================================= #################### # iterate: subset ##################### print(paste0('subset to iterate over;', snps)) # start loop perfectSeparation <- function(w) { if(grepl("fitted probabilities numerically 0 or 1 occurred", as.character(w))) {ww <<- ww+1} } for (i in snps){ print(i) # IV #mut<-as.numeric(grepl(i,raw_data$all_muts_gene)) mut = grepl(i,raw_data$all_muts_gene) table(mut) # DV #dst<-as.numeric(raw_data[[drug]]) dst = raw_data[[drug]] # table print(table(dst, mut)) #===================== # logistic regression, glm.control(maxit = n) #https://stats.stackexchange.com/questions/11109/how-to-deal-with-perfect-separation-in-logistic-regression #===================== #n = 1 summary(model<-glm(dst ~ mut , family = binomial #, control = glm.control(maxit = 1) #, options(warn = 1) )) #, warning = perfectSeparation)) or_logistic = exp(summary(model)$coefficients[2,1]); print(or_logistic) pval_logistic_maxit = summary(model)$coefficients[2,4]; print(pval_logistic_maxit) logistic_se = summary(model)$coefficients[2,2] logistic_zval = summary(model)$coefficients[2,3] ci_mod = exp(confint(model))[2,] logistic_ci_lower = ci_mod[["2.5 %"]] logistic_ci_upper = ci_mod[["97.5 %"]] #===================== # fishers test #===================== #attributes(fisher.test(table(dst, mut))) or_fisher = fisher.test(table(dst, mut))$estimate or_fisher = or_fisher[[1]]; or_fisher pval_fisher = fisher.test(table(dst, mut))$p.value ; pval_fisher #===================== # chi square #===================== #chisq.test(y = dst, x = mut) #attributes(chisq.test(table(dst, mut))) est_chisq = chisq.test(table(dst, mut))$statistic est_chisq = est_chisq[[1]]; est_chisq pval_chisq = chisq.test(table(dst, mut))$p.value; pval_chisq # all output writeLines(c(paste0("mutation:", i) , paste0("=========================") , paste0("or_logistic:", or_logistic,"--->", "P-val_logistic_maxit:", pval_logistic_maxit ) , paste0("OR_fisher:", or_fisher, "--->","P-val_fisher:", pval_fisher ) , paste0("Chi_sq_estimate:", est_chisq, "--->","P-val_chisq:", pval_chisq))) } #===================== # fishers test #===================== #attributes(fisher.test(table(dst, mut))) or_fisher = fisher.test(table(dst, mut))$estimate or_fisher = or_fisher[[1]]; or_fisher pval_fisher = fisher.test(table(dst, mut))$p.value ; pval_fisher # https://stats.stackexchange.com/questions/259635/what-is-the-difference-using-a-fishers-exact-test-vs-a-logistic-regression-for exact2x2(table(dst, mut),tsmethod="central") #===================================================================== # iterate over a df and then add these values # my_data = as.data.frame(gene_snps_unique) colnames(my_data) = "mutation" print(colnames(my_data)) perfectSeparation <- function(w) { if(grepl("fitted probabilities numerically 0 or 1 occurred", as.character(w))) {ww <<- ww+1} } for(i in my_data$mutation) { print(paste0('snp to iterate over:', i)) } for(i in my_data$mutation) { print(paste0('snp to iterate over:', i)) ##### # Run logistic regression ##### #************* # start logistic regression model building # set the IV and DV for the logistic regression model and model #************* # IV: corresponds to each unique snp (extracted using grep) mut = as.numeric(grepl(i,raw_data$dr_muts_pza)) # DV: pyrazinamide 0 or 1 dst = as.numeric(raw_data$pyrazinamide) tab = table(mut, dst) print(tab) # glm model: with and without maxit model = tryCatch( glm(dst ~ mut , family = binomial #, control = glm.control(maxit = 1) # only used when required for one step estimator ), warning = perfectSeparation) model = glm(dst ~ mut, family = binomial) print(summary(model)) #********** # extract relevant model output #********** # extract log OR i.e the Beta estimate of the logistic model for a given snp my_logor = summary(model)$coefficients[2,1] print(paste0('Beta:', my_logor)) # Dervive OR i.e exp(my_or) from the logistic model for a given snp #my_or = round(exp(summary(model)$coefficients[2,1]), roundto) my_or = exp(summary(model)$coefficients[2,1]) print(paste0('OR:', my_or)) # extract SE of the logistic model for a given snp my_se = summary(model)$coefficients[2,2] print(paste0('SE:', my_se)) # extract Z of the logistic model for a given snp my_zval = summary(model)$coefficients[2,3] print(paste0('Z-value:', my_zval)) # extract P-value of the logistic model for a given snp my_pval = summary(model)$coefficients[2,4] print(paste0('P-value:', my_pval)) # extract confint interval of snp (2 steps, since the output is a named number) ci_mod = exp(confint(model))[2,] #my_ci = paste(ci_mod[["2.5 %"]], ",", ci_mod[["97.5 %"]]) my_ci_lower = ci_mod[["2.5 %"]] my_ci_upper = ci_mod[["97.5 %"]] print(paste0('CI_lower:', my_ci_lower)) print(paste0('CI_upper:', my_ci_upper)) #************* # Assign the regression output in the to df (meta_pza_pnca_snps_only) # you can use ('=' or '<-/->') #************* #my_data$logistic_logOR[my_data$mutation == i] = my_logor my_or -> my_data$OR[my_data$mutation == i] my_pval -> my_data$pvalue[my_data$mutation == i] my_zval -> my_data$zvalue[my_data$mutation == i] my_se -> my_data$logistic_se[my_data$mutation == i] my_ci_lower -> my_data$ci_lower[my_data$mutation == i] my_ci_upper -> my_data$ci_upper[my_data$mutation == i] #=#=#=#=#=#=#=# # COMMENT: This assigns the relevant extracted output # to the df and fills NA where the mutation (row) doesn't exist # in my mutation list I am iterating over #=#=#=#=#=#=#=# }