#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' Created on Tue Aug 6 12:56:03 2019 @author: tanu ''' #============================================================================= # Task: Residue depth (rd) processing to generate a df with residue_depth(rd) # values # FIXME # Input: '.tsv' i.e residue depth txt file (output from .zip file manually # downloaded from the website). # This should be integrated into the pipeline # Output: .csv with 3 cols i.e position, rd_values & 3-letter wt aa code(caps) #============================================================================= #%% load packages import sys, os import pandas as pd #import numpy as np #============================================================================= #%% specify input and curr dir homedir = os.path.expanduser('~') # set working dir os.getcwd() os.chdir(homedir + '/git/LSHTM_analysis/meta_data_analysis') os.getcwd() #============================================================================= #%% variable assignment: input and output drug = 'pyrazinamide' gene = 'pncA' gene_match = gene + '_p.' #========== # data dir #========== #indir = 'git/Data/pyrazinamide/input/original' datadir = homedir + '/' + 'git/Data' #======= # input #======= #indir = 'git/Data/pyrazinamide/input/original' indir = datadir + '/' + drug + '/' + 'output' in_filename = '3pl1_rd.tsv' infile = indir + '/' + in_filename print('Input filename:', in_filename , '\nInput path:', indir , '\n=============================================================') #======= # output #======= outdir = datadir + '/' + drug + '/' + 'output' out_filename = gene.lower() + '_rd.csv' outfile = outdir + '/' + out_filename print('Output filename:', out_filename , '\nOutput path:', outdir , '\n=============================================================') #%% end of variable assignment for input and output files #======================================================================= #%% Read input file rd_data = pd.read_csv(infile, sep = '\t') print('Reading input file:', infile , '\nNo. of rows:', len(rd_data) , '\nNo. of cols:', len(rd_data.columns)) print('Column names:', rd_data.columns , '\n===============================================================') #======================== # creating position col #======================== # Extracting residue number from index and assigning # the values to a column [position]. Then convert the position col to numeric. rd_data['position'] = rd_data.index.str.extract('([0-9]+)').values # converting position to numeric rd_data['position'] = pd.to_numeric(rd_data['position']) rd_data['position'].dtype print('Extracted residue num from index and assigned as a column:' , '\ncolumn name: position' , '\ntotal no. of cols now:', len(rd_data.columns) , '\n=============================================================') #======================== # Renaming amino-acid # and all-atom cols #======================== print('Renaming columns:' , '\ncolname==> # chain:residue: wt_3letter_caps' , '\nYES... the column name *actually* contains a # ..!' , '\ncolname==> all-atom: rd_values' , '\n=============================================================') rd_data.rename(columns = {'# chain:residue':'wt_3letter_caps', 'all-atom':'rd_values'}, inplace = True) print('Column names:', rd_data.columns) #======================== # extracting df with the # desired columns #======================== print('Extracting relevant columns for writing df as csv') rd_df = rd_data[['position','rd_values','wt_3letter_caps']] if len(rd_df) == len(rd_data): print('PASS: extracted df has expected no. of rows' ,'\nExtracted df dim:' ,'\nNo. of rows:', len(rd_df) ,'\nNo. of cols:', len(rd_df.columns)) else: print('FAIL: no. of rows mimatch' , '\nExpected no. of rows:', len(rd_data) , '\nGot no. of rows:', len(rd_df) , '\n=========================================================') #%% write file print('Writing file:' , '\nFilename:', out_filename , '\nPath:', outdir , '\n=============================================================') rd_df.to_csv(outfile, header = True, index = False) print('Finished writing:', out_filename , '\nNo. of rows:', len(rd_df) , '\nNo. of cols:', len(rd_df.columns) , '\n=============================================================') #%% end of script #=======================================================================