getwd() setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting") getwd() ############################################################ # 1: Installing and loading required packages and functions ############################################################ #source("../Header_TT.R") #source("../barplot_colour_function.R") #library(tidyverse) ########################### #2: Read file: normalised file, output of step 4 mcsm pipeline ########################### #my_df <- read.csv("../../Data/mcsm_complex1_normalised.csv" # , row.names = 1 # , stringsAsFactors = F # , header = T) # call script combining_df source("../combining_two_df.R") #---------------------- PAY ATTENTION # the above changes the working dir # from Plotting to Scripts" #---------------------- PAY ATTENTION #========================== # This will return: # df with NA for pyrazinamide: #merged_df2 #merged_df2_comp # df without NA for pyrazinamide: #merged_df3 #merged_df3_comp #========================== ########################### # Data to choose: # We will be using the small dfs # to generate the coloured axis ########################### # uncomment as necessary #!!!!!!!!!!!!!!!!!!!!!!! # REASSIGNMENT my_df = merged_df3 #my_df = merged_df3_comp #!!!!!!!!!!!!!!!!!!!!!!! # delete variables not required rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp) str(my_df) my_df$Position c1 = my_df[my_df$Mutationinformation == "L4S",] # order my_df by Position my_df_o = my_df[order(my_df$Position),] head(my_df_o$Position); tail(my_df_o$Position) c2 = my_df_o[my_df_o$Mutationinformation == "L4S",] # sanity check if (sum(table(c1 == c2)) == ncol(my_df)){ print ("Sanity check passsd") }else{ print ("Error!: Please debug your code") } rm(my_df, c1, c2) # create a new df with unique position numbers and cols Position = unique(my_df_o$Position) #130 Position_cols = as.data.frame(Position) head(Position_cols) ; tail(Position_cols) # specify active site residues and bg colour Position = c(49, 51, 57, 71 , 8, 96, 138 , 13, 68 , 103, 137 , 133, 134) #13 lab_bg = rep(c("purple" , "yellow" , "cornflowerblue" , "blue" , "green"), times = c(4, 3, 2, 2, 2) ) # second bg colour for active site residues #lab_bg2 = rep(c("white" # , "green" , "white", "green" # , "white" # , "white" # , "white"), times = c(4 # , 1, 1, 1 # , 2 # , 2 # , 2) #) #%%%%%%%%% # revised: leave the second box coloured as the first one incase there is no second colour #%%%%%%%%% lab_bg2 = rep(c("purple" , "green", "yellow", "green" , "cornflowerblue" , "blue" , "green"), times = c(4 , 1, 1, 1 , 2 , 2 , 2)) # fg colour for labels for active site residues lab_fg = rep(c("white" , "black" , "black" , "white" , "black"), times = c(4, 3, 2, 2, 2)) #%%%%%%%%% # revised: make the purple ones black # fg colour for labels for active site residues #%%%%%%%%% #lab_fg = rep(c("black" # , "black" # , "black" # , "white" # , "black"), times = c(4, 3, 2, 2, 2)) # combined df with active sites, bg and fg colours aa_cols_ref = data.frame(Position , lab_bg , lab_bg2 , lab_fg , stringsAsFactors = F) #13, 4 str(Position_cols); class(Position_cols) str(aa_cols_ref); class(aa_cols_ref) # since Position is int and numeric in the two dfs resp, # converting numeric to int for consistency aa_cols_ref$Position = as.integer(aa_cols_ref$Position) class(aa_cols_ref$Position) #=========== # Merge 1: merging Positions df (Position_cols) and # active site cols (aa_cols_ref) # linking column: "Position" # This is so you can have colours defined for all 130 positions #=========== head(Position_cols$Position); head(aa_cols_ref$Position) mut_pos_cols = merge(Position_cols, aa_cols_ref , by = "Position" , all.x = TRUE) head(mut_pos_cols) # replace NA's # :column "lab_bg" with "white" # : column "lab_fg" with "black" mut_pos_cols$lab_bg[is.na(mut_pos_cols$lab_bg)] <- "white" mut_pos_cols$lab_bg2[is.na(mut_pos_cols$lab_bg2)] <- "white" mut_pos_cols$lab_fg[is.na(mut_pos_cols$lab_fg)] <- "black" head(mut_pos_cols) #=========== # Merge 2: Merge mut_pos_cols with mcsm df # Now combined the 130 positions with aa colours with # the mcsm_data #=========== # dfs to merge df0 = my_df_o df1 = mut_pos_cols # check the column on which merge will be performed head(df0$Position); tail(df0$Position) head(df1$Position); tail(df1$Position) # should now have 3 extra columns my_df = merge(df0, df1 , by = "Position" , all.x = TRUE) # sanity check my_df[my_df$Position == "49",] my_df[my_df$Position == "13",] my_df$Position # clear variables rm(aa_cols_ref , df0 , df1 , my_df_o , Position_cols , lab_bg , lab_bg2 , lab_fg , Position )