getwd() setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting") getwd() ######################################################################## # Installing and loading required packages # ######################################################################## source("../Header_TT.R") ######################################################################## # Read file: call script for combining df for lig # ######################################################################## source("../combining_two_df_lig.R") #---------------------- PAY ATTENTION # the above changes the working dir #[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts" #---------------------- PAY ATTENTION #========================== # This will return: # df with NA: # merged_df2 # merged_df3 # df without NA: # merged_df2_comp # merged_df3_comp #=========================== ########################### # Data for Lig plots # you need merged_df3 # or # merged_df3_comp # since these have unique SNPs # I prefer to use the merged_df3 # because using the _comp dataset means # we lose some muts and at this level, we should use # as much info as available ########################### # uncomment as necessary #%%%%%%%%%%%%%%%%%%%%%%%% # REASSIGNMENT my_df = merged_df3 #my_df = merged_df3_comp #%%%%%%%%%%%%%%%%%%%%%%%% # delete variables not required rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp) # quick checks colnames(my_df) str(my_df) ############################# # Extra sanity check: # for mcsm_lig ONLY # Dis_lig_Ang should be <10 ############################# if (max(my_df$Dis_lig_Ang) < 10){ print ("Sanity check passed: lig data is <10Ang") }else{ print ("Error: data should be filtered to be within 10Ang") } ######################################################################## # end of data extraction and cleaning for plots # ######################################################################## #========================== # Plot: Barplot with scores (unordered) # corresponds to Lig_outcome # Stacked Barplot with colours: Lig_outcome @ position coloured by # Lig_outcome. This is a barplot where each bar corresponds # to a SNP and is coloured by its corresponding Lig_outcome. #============================ #=================== # Data for plots #=================== #%%%%%%%%%%%%%%%%%%%%%%%% # REASSIGNMENT df = my_df #%%%%%%%%%%%%%%%%%%%%%%%% rm(my_df) # sanity checks upos = unique(my_df$Position) # should be a factor is.factor(df$Lig_outcome) #TRUE table(df$Lig_outcome) # should be -1 and 1: may not be in this case because you have filtered the data # FIXME: normalisation before or after filtering? min(df$ratioPredAff) # max(df$ratioPredAff) # # sanity checks tapply(df$ratioPredAff, df$Lig_outcome, min) tapply(df$ratioPredAff, df$Lig_outcome, max) #****************** # generate plot #****************** # set output dir for plots getwd() setwd("~/git/Data/pyrazinamide/output/plots") getwd() my_title = "Ligand affinity" # axis label size my_xaxls = 13 my_yaxls = 15 # axes text size my_xaxts = 15 my_yaxts = 15 # no ordering of x-axis g = ggplot(df, aes(factor(Position, ordered = T))) g + geom_bar(aes(fill = Lig_outcome), colour = "grey") + theme( axis.text.x = element_text(size = my_xaxls , angle = 90 , hjust = 1 , vjust = 0.4) , axis.text.y = element_text(size = my_yaxls , angle = 0 , hjust = 1 , vjust = 0) , axis.title.x = element_text(size = my_xaxts) , axis.title.y = element_text(size = my_yaxts ) ) + labs(title = my_title , x = "Position" , y = "Frequency") # for sanity and good practice rm(df) #======================= end of plot # axis colours labels # https://stackoverflow.com/questions/38862303/customize-ggplot2-axis-labels-with-different-colors # https://stackoverflow.com/questions/56543485/plot-coloured-boxes-around-axis-label