#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jun 29 19:44:06 2022 @author: tanu """ import sys, os import pandas as pd import numpy as np import re from copy import deepcopy from sklearn import linear_model from sklearn import datasets from collections import Counter from sklearn.linear_model import LogisticRegression, LogisticRegressionCV from sklearn.linear_model import RidgeClassifier, RidgeClassifierCV, SGDClassifier, PassiveAggressiveClassifier from sklearn.naive_bayes import BernoulliNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.gaussian_process import GaussianProcessClassifier, kernels from sklearn.gaussian_process.kernels import RBF, DotProduct, Matern, RationalQuadratic, WhiteKernel from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis from sklearn.neural_network import MLPClassifier from sklearn.svm import SVC from xgboost import XGBClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder from sklearn.compose import ColumnTransformer from sklearn.compose import make_column_transformer from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report # added from sklearn.model_selection import train_test_split, cross_validate, cross_val_score, LeaveOneOut, KFold, RepeatedKFold, cross_val_predict from sklearn.model_selection import train_test_split, cross_validate, cross_val_score from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold from sklearn.pipeline import Pipeline, make_pipeline from sklearn.feature_selection import RFE, RFECV import itertools import seaborn as sns import matplotlib.pyplot as plt from statistics import mean, stdev, median, mode from imblearn.over_sampling import RandomOverSampler from imblearn.under_sampling import RandomUnderSampler from imblearn.over_sampling import SMOTE from sklearn.datasets import make_classification from imblearn.combine import SMOTEENN from imblearn.combine import SMOTETomek from imblearn.over_sampling import SMOTENC from imblearn.under_sampling import EditedNearestNeighbours from imblearn.under_sampling import RepeatedEditedNearestNeighbours from sklearn.model_selection import GridSearchCV from sklearn.base import BaseEstimator from sklearn.impute import KNNImputer as KNN import json import argparse import re import itertools from sklearn.model_selection import LeaveOneGroupOut ############################################################################### homedir = os.path.expanduser("~") sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions') sys.path ############################################################################### #outdir = homedir + '/git/LSHTM_ML/output/combined/' outdir = homedir + '/git/LSHTM_ML/output/test/' #==================== # Import ML functions #==================== from ml_data_combined import * from MultClfs import * #from GetMLData import * #from SplitTTS import * skf_cv = StratifiedKFold(n_splits = 10 , shuffle = True, random_state = 42) #logo = LeaveOneGroupOut() #random_state = 42 #njobs = os.cpu_count() sampling_names = {"": "none", "_ros": "Oversampling", "_rus": "Undersampling", "_rouC": "Over+Under", "_smnc": "SMOTE"} ######################################################################## # COMPLETE data: No tts_split ######################################################################## #%% def CMLogoSkf(cm_input_df , all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"] , bts_genes = ["embb", "katg", "rpob", "pnca", "gid"] #, bts_genes = ["embb"] , cols_to_drop = ['dst', 'dst_mode', 'gene_name'] , target_var = 'dst_mode' , gene_group = 'gene_name' , std_gene_omit = [] , output_dir = outdir , file_suffix = "" , random_state = 42 , k_smote = 5 , njobs = os.cpu_count() ): rs = {'random_state': random_state} njobs = {'n_jobs': njobs } for bts_gene in bts_genes: outDict = {} print('\n BTS gene:', bts_gene) if not std_gene_omit: training_genesL = ['alr'] else: training_genesL = [] tr_gene_omit = std_gene_omit + [bts_gene] n_tr_genes = (len(bts_genes) - (len(std_gene_omit))) #n_total_genes = (len(bts_genes) - len(std_gene_omit)) n_total_genes = len(all_genes) training_genesL = training_genesL + list(set(bts_genes) - set(tr_gene_omit)) #training_genesL = [element for element in bts_genes if element not in tr_gene_omit] print('\nTotal genes: ', n_total_genes ,'\nTraining on:', n_tr_genes ,'\nTraining on genes:', training_genesL , '\nOmitted genes:', tr_gene_omit , '\nBlind test gene:', bts_gene) #print('\nDim of data:', cm_input_df.shape) tts_split_type = "logo_skf_BT_" + bts_gene # if len(file_suffix) > 0: # file_suffix = '_' + file_suffix # else: # file_suffix = file_suffix #outFile = output_dir + str(n_tr_genes+1) + "genes_" + tts_split_type + '_' + file_suffix + ".csv" #print(outFile) #------- # training #------ cm_training_df = cm_input_df[~cm_input_df['gene_name'].isin(tr_gene_omit)] cm_X = cm_training_df.drop(cols_to_drop, axis=1, inplace=False) #cm_y = cm_training_df.loc[:,'dst_mode'] cm_y = cm_training_df.loc[:, target_var] gene_group = cm_training_df.loc[:,'gene_name'] #print('\nTraining data dim:', cm_X.shape # , '\nTraining Target dim:', cm_y.shape) if all(cm_X.columns.isin(cols_to_drop) == False): print('\nChecked training df does NOT have Target var') else: sys.exit('\nFAIL: training data contains Target var') #--------------- # BTS: genes #--------------- cm_test_df = cm_input_df[cm_input_df['gene_name'].isin([bts_gene])] cm_bts_X = cm_test_df.drop(cols_to_drop, axis = 1, inplace = False) #cm_bts_y = cm_test_df.loc[:, 'dst_mode'] cm_bts_y = cm_test_df.loc[:, target_var] #print('\nTEST data dim:' , cm_bts_X.shape # , '\nTEST Target dim:' , cm_bts_y.shape) #print("Running Multiple models on LOGO with SKF") # NULL, ros, rus, rouc, smnc outDict.update({'X_cm' : cm_X , 'y_cm' : cm_y , 'X_bts_cm' : cm_bts_X , 'y_bts_cm' : cm_bts_y }) ####################################################################### # RESAMPLING ####################################################################### #------------------------------ # Simple Random oversampling # [Numerical + catgeorical] #------------------------------ oversample = RandomOverSampler(sampling_strategy='minority') X_ros, y_ros = oversample.fit_resample(cm_X, cm_y) # print('\nSimple Random OverSampling\n', Counter(y_ros)) # print(X_ros.shape) #------------------------------ # Simple Random Undersampling # [Numerical + catgeorical] #------------------------------ undersample = RandomUnderSampler(sampling_strategy='majority') X_rus, y_rus = undersample.fit_resample(cm_X, cm_y) # print('\nSimple Random UnderSampling\n', Counter(y_rus)) # print(X_rus.shape) #------------------------------ # Simple combine ROS and RUS # [Numerical + catgeorical] #------------------------------ oversample = RandomOverSampler(sampling_strategy='minority') X_ros, y_ros = oversample.fit_resample(cm_X, cm_y) undersample = RandomUnderSampler(sampling_strategy='majority') X_rouC, y_rouC = undersample.fit_resample(X_ros, y_ros) # print('\nSimple Combined Over and UnderSampling\n', Counter(y_rouC)) # print(X_rouC.shape) #------------------------------ # SMOTE_NC: oversampling # [numerical + categorical] #https://stackoverflow.com/questions/47655813/oversampling-smote-for-binary-and-categorical-data-in-python #------------------------------ # Determine categorical and numerical features numerical_ix = cm_X.select_dtypes(include=['int64', 'float64']).columns num_featuresL = list(numerical_ix) numerical_colind = cm_X.columns.get_indexer(list(numerical_ix) ) categorical_ix = cm_X.select_dtypes(include=['object', 'bool']).columns categorical_colind = cm_X.columns.get_indexer(list(categorical_ix)) #k_sm = 5 # default k_sm = k_smote sm_nc = SMOTENC(categorical_features=categorical_colind, k_neighbors = k_sm , **rs , **njobs) X_smnc, y_smnc = sm_nc.fit_resample(cm_X, cm_y) outDict.update({'X_ros_cm' : X_ros , 'y_ros_cm' : y_ros , 'X_rus_cm' : X_rus , 'y_rus_cm' : y_rus , 'X_rouC_cm': X_rouC , 'y_rouC_cm': y_rouC , 'X_smnc_cm': X_smnc , 'y_smnc_cm': y_smnc}) #%%:Running Multiple models on LOGO with SKF # cD3_v2 = MultModelsCl_logo_skf(input_df = cm_X # two func were identical excpet for name for i in sampling_names.keys(): print("thing:", "X"+i+"_cm", "y"+i+"_cm") current_X = "X" + i + "_cm" current_y = "y" + i + "_cm" current_X_df = outDict[current_X] current_y_df = outDict[current_y] cD3_v2 = MultModelsCl(input_df = current_X_df , target = current_y_df , sel_cv = skf_cv , tts_split_type = tts_split_type , resampling_type = sampling_names[i] # 'none' # default , add_cm = True , add_yn = True , var_type = 'mixed' , scale_numeric = ['min_max'] , run_blind_test = True , blind_test_df = cm_bts_X , blind_test_target = cm_bts_y , return_formatted_output = True , random_state = 42 , n_jobs = os.cpu_count() # the number of jobs should equal the number of CPU cores ) outFile = output_dir + str(n_tr_genes+1) + "genes_" + tts_split_type + '_' + file_suffix + i + ".csv" cD3_v2.to_csv(outFile) # outDict.update({'X' : cm_X # , 'y' : cm_y # , 'X_bts' : cm_bts_X # , 'y_bts' : cm_bts_y # }) # return(outDict) #%% RUN #=============== # Complete Data #============== CMLogoSkf(cm_input_df = combined_df,file_suffix = "complete") CMLogoSkf(cm_input_df = combined_df, std_gene_omit=['alr'], file_suffix = "complete") #=============== # Actual Data #=============== #CMLogoSkf(cm_input_df = combined_df_actual, file_suffix = "actual") #CMLogoSkf(cm_input_df = combined_df_actual, std_gene_omit=['alr'], file_suffix = "actual")