gidb_dev #1

Closed
tanu wants to merge 386 commits from gidb_dev into master
21 changed files with 2132 additions and 243 deletions
Showing only changes of commit 5102bbea1b - Show all commits

1
.gitignore vendored
View file

@ -13,3 +13,4 @@ scratch
test
plotting_test
scripts_old
foldx/test/

View file

@ -54,6 +54,8 @@ os.getcwd()
# FIXME: local imports
#from combining import combine_dfs_with_checks
from combining_FIXME import detect_common_cols
from reference_dict import oneletter_aa_dict # CHECK DIR STRUC THERE!
from reference_dict import low_3letter_dict # CHECK DIR STRUC THERE!
#=======================================================================
#%% command line args
arg_parser = argparse.ArgumentParser()
@ -71,13 +73,27 @@ args = arg_parser.parse_args()
#%% variable assignment: input and output
#drug = 'pyrazinamide'
#gene = 'pncA'
gene_match = gene + '_p.'
drug = args.drug
gene = args.gene
datadir = args.datadir
indir = args.input_dir
outdir = args.output_dir
gene_match = gene + '_p.'
print('mut pattern for gene', gene, ':', gene_match)
nssnp_match = gene_match +'[A-Za-z]{3}[0-9]+[A-Za-z]{3}'
print('nsSNP for gene', gene, ':', nssnp_match)
wt_regex = gene_match.lower()+'([A-Za-z]{3})'
print('wt regex:', wt_regex)
mut_regex = r'[0-9]+(\w{3})$'
print('mt regex:', mut_regex)
pos_regex = r'([0-9]+)'
print('position regex:', pos_regex)
#%%=======================================================================
#==============
# directories
@ -155,6 +171,8 @@ ncols_m1 = len(mcsm_foldx_dfs.columns)
print('\n\nResult of first merge:', mcsm_foldx_dfs.shape
, '\n===================================================================')
mcsm_foldx_dfs[merging_cols_m1].apply(len)
mcsm_foldx_dfs[merging_cols_m1].apply(len) == len(mcsm_foldx_dfs)
#%%============================================================================
print('==================================='
, '\nSecond merge: dssp + kd'
@ -183,6 +201,8 @@ ncols_m3 = len(dssp_kd_rd_dfs.columns)
print('\n\nResult of Third merge:', dssp_kd_rd_dfs.shape
, '\n===================================================================')
dssp_kd_rd_dfs[merging_cols_m3].apply(len)
dssp_kd_rd_dfs[merging_cols_m3].apply(len) == len(dssp_kd_rd_dfs)
#%%============================================================================
print('======================================='
, '\nFourth merge: First merge + Third merge'
@ -203,12 +223,16 @@ else:
print('\nResult of Fourth merge:', combined_df.shape
, '\n===================================================================')
combined_df[merging_cols_m4].apply(len)
combined_df[merging_cols_m4].apply(len) == len(combined_df)
#%%============================================================================
# OR merges: TEDIOUSSSS!!!!
#%%RRRR
del(mcsm_df, foldx_df, mcsm_foldx_dfs, dssp_kd_dfs, dssp_kd_rd_dfs,rd_df, kd_df, infile_mcsm, infile_foldx, infile_dssp, infile_kd)
del(merging_cols_m1, merging_cols_m2, merging_cols_m3, merging_cols_m4)
del(in_filename_dssp, in_filename_foldx, in_filename_kd, in_filename_mcsm, in_filename_rd)
#%%
print('==================================='
, '\nFifth merge: afor_df + afor_kin_df'
, '\n===================================')
@ -220,8 +244,6 @@ afor_df = pd.read_csv(infile_afor, sep = ',')
afor_kin_df = pd.read_csv(infile_afor_kin, sep = ',')
afor_kin_df.columns = afor_kin_df.columns.str.lower()
merging_cols_m5 = detect_common_cols(afor_df, afor_kin_df)
print('Dim of afor_df:', afor_df.shape
@ -230,7 +252,7 @@ print('Dim of afor_df:', afor_df.shape
# finding if ALL afor_kin_df muts are present in afor_df
# i.e all kinship muts should be PRESENT in mycalcs_present
if len(afor_kin_df[afor_kin_df['mutation'].isin(afor_df['mutation'])]) == afor_kin_df.shape[0]:
print('PASS: ALL or_kinship muts are present in my or list')
print('PASS: ALL', len(afor_kin_df), 'or_kinship muts are present in my or list')
else:
nf_muts = len(afor_kin_df[~afor_kin_df['mutation'].isin(afor_df['mutation'])])
nf_muts_df = afor_kin_df[~afor_kin_df['mutation'].isin(afor_df['mutation'])]
@ -241,10 +263,10 @@ else:
# Now checking how many afor_df muts are NOT present in afor_kin_df
common_muts = len(afor_df[afor_df['mutation'].isin(afor_kin_df['mutation'])])
extra_muts_myor = afor_kin_df.shape[0] - common_muts
extra_muts_myor = afor_kin_df.shape[0] - common_muts
print('=========================================='
, '\nmy or calcs', extra_muts_myor, 'extra mutation\n'
, '\nmy or calcs has', common_muts, 'present in af_or_kin_df'
, '\n==========================================')
print('Expected cals for merging with outer_join...')
@ -252,23 +274,29 @@ print('Expected cals for merging with outer_join...')
expected_rows = afor_df.shape[0] + extra_muts_myor
expected_cols = afor_df.shape[1] + afor_kin_df.shape[1] - len(merging_cols_m5)
afor_df['mutation']
afor_kin_df['mutation']
ors_df = pd.merge(afor_df, afor_kin_df, on = merging_cols_m5, how = o_join)
if ors_df.shape[0] == expected_rows and ors_df.shape[1] == expected_cols:
print('PASS: OR dfs successfully combined! PHEWWWW!')
print('PASS but with duplicate muts: OR dfs successfully combined! PHEWWWW!'
, '\nDuplicate muts present but with different \'ref\' and \'alt\' alleles')
else:
print('FAIL: could not combine OR dfs'
, '\nCheck expected rows and cols calculation and join type')
print('Dim of merged ors_df:', ors_df.shape)
ors_df[merging_cols_m5].apply(len)
ors_df[merging_cols_m5].apply(len) == len(ors_df)
#%%============================================================================
# formatting ors_df
ors_df.columns
# Dropping unncessary columns: already removed in ealier preprocessing
#cols_to_drop = ['reference_allele', 'alternate_allele', 'symbol' ]
cols_to_drop = ['n_miss']
print('Dropping', len(cols_to_drop), 'columns:\n'
, cols_to_drop)
@ -283,18 +311,13 @@ column_order = ['mutation'
, 'wild_type'
, 'position'
, 'mutant_type'
#, 'chr_num_allele' #old
, 'ref_allele'
, 'alt_allele'
, 'mut_info_f1'
, 'mut_info_f2'
, 'mut_type'
, 'gene_id'
#, 'gene_number' #old
, 'gene_name'
#, 'mut_region'
#, 'reference_allele'
#, 'alternate_allele'
, 'chromosome_number'
, 'af'
, 'af_kin'
@ -317,14 +340,9 @@ column_order = ['mutation'
, 'se_kin'
, 'zval_logistic'
, 'logl_h1_kin'
, 'l_remle_kin'
#, 'wt_3let' # old
#, 'mt_3let' # old
#, 'symbol'
#, 'n_miss'
]
, 'l_remle_kin']
if ( (len(column_order) == ors_df.shape[1]) and (DataFrame(column_order).isin(ors_df.columns).all().all()):
if ( (len(column_order) == ors_df.shape[1]) and (DataFrame(column_order).isin(ors_df.columns).all().all())):
print('PASS: Column order generated for all:', len(column_order), 'columns'
, '\nColumn names match, safe to reorder columns'
, '\nApplying column order to df...' )
@ -337,6 +355,61 @@ else:
print('\nResult of Sixth merge:', ors_df_ordered.shape
, '\n===================================================================')
#%%
ors_df_ordered.shape
check = ors_df_ordered[['mutationinformation','mutation', 'wild_type', 'position', 'mutant_type']]
# populating 'nan' info
lookup_dict = dict()
for k, v in low_3letter_dict.items():
lookup_dict[k] = v['one_letter_code']
#print(lookup_dict)
wt = ors_df_ordered['mutation'].str.extract(wt_regex).squeeze()
#print(wt)
ors_df_ordered['wild_type'] = wt.map(lookup_dict)
ors_df_ordered['position'] = ors_df_ordered['mutation'].str.extract(pos_regex)
mt = ors_df_ordered['mutation'].str.extract(mut_regex).squeeze()
ors_df_ordered['mutant_type'] = mt.map(lookup_dict)
ors_df_ordered['mutationinformation'] = ors_df_ordered['wild_type'] + ors_df_ordered.position.map(str) + ors_df_ordered['mutant_type']
check = ors_df_ordered[['mutationinformation','mutation', 'wild_type', 'position', 'mutant_type']]
# populate mut_info_f1
ors_df_ordered['mut_info_f1'].isna().sum()
ors_df_ordered['mut_info_f1'] = ors_df_ordered['position'].astype(str) + ors_df_ordered['wild_type'] + '>' + ors_df_ordered['position'].astype(str) + ors_df_ordered['mutant_type']
ors_df_ordered['mut_info_f1'].isna().sum()
# populate mut_info_f2
ors_df_ordered['mut_info_f2'] = ors_df_ordered['mutation'].str.replace(gene_match.lower(), 'p.', regex = True)
# populate mut_type
ors_df_ordered['mut_type'].isna().sum()
#mut_type_word = ors_df_ordered['mut_type'].value_counts()
mut_type_word = 'missense' # FIXME, should be derived
ors_df_ordered['mut_type'].fillna(mut_type_word, inplace = True)
ors_df_ordered['mut_type'].isna().sum()
# populate gene_id
ors_df_ordered['gene_id'].isna().sum()
#gene_id_word = ors_df_ordered['gene_id'].value_counts()
gene_id_word = 'Rv2043c' # FIXME, should be derived
ors_df_ordered['gene_id'].fillna(gene_id_word, inplace = True)
ors_df_ordered['gene_id'].isna().sum()
# populate gene_name
ors_df_ordered['gene_name'].isna().sum()
ors_df_ordered['gene_name'].value_counts()
ors_df_ordered['gene_name'].fillna(gene, inplace = True)
ors_df_ordered['gene_name'].isna().sum()
# check numbers
ors_df_ordered['or_kin'].isna().sum()
# should be 0
ors_df_ordered['or_mychisq'].isna().sum()
#%%============================================================================
print('==================================='
, '\nSixth merge: Fourth + Fifth merge'
@ -344,53 +417,159 @@ print('==================================='
, '\n===================================')
#combined_df_all = combine_dfs_with_checks(combined_df, ors_df_ordered, my_join = i_join)
merging_cols_m6 = detect_common_cols(combined_df, ors_df_ordered)
merging_cols_m6 = detect_common_cols(combined_df, ors_df_ordered)
# dtype problems
if len(merging_cols_m6) > 1 and 'position'in merging_cols_m6:
print('Removing \'position\' from merging_cols_m6 to make dtypes consistent'
, '\norig length of merging_cols_m6:', len(merging_cols_m6))
merging_cols_m6.remove('position')
print('\nlength after removing:', len(merging_cols_m6))
print('Dim of df1:', combined_df.shape
, '\nDim of df2:', ors_df_ordered.shape
, '\nNo. of merging_cols:', len(merging_cols_m6))
print('Checking mutations in the two dfs:'
, '\nmuts in df1 but NOT in df2:'
, '\nmuts in df1 present in df2:'
, combined_df['mutationinformation'].isin(ors_df_ordered['mutationinformation']).sum()
, '\nmuts in df2 but NOT in df1:'
, '\nmuts in df2 present in df1:'
, ors_df_ordered['mutationinformation'].isin(combined_df['mutationinformation']).sum())
#print('\nNo. of common muts:', np.intersect1d(combined_df['mutationinformation'], ors_df_ordered['mutationinformation']) )
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
combined_df_all = pd.merge(combined_df, ors_df, on = merging_cols_m6, how = l_join)
#----------
# merge 6
#----------
combined_df_all = pd.merge(combined_df, ors_df_ordered, on = merging_cols_m6, how = o_join)
combined_df_all.shape
# FIXME: DIM
# only with left join!
outdf_expected_rows = len(combined_df)
# sanity check for merge 6
outdf_expected_rows = len(combined_df) + extra_muts_myor
unique_muts = len(combined_df)
outdf_expected_cols = len(combined_df.columns) + len(ors_df_ordered.columns) - len(merging_cols_m6)
#if combined_df_all.shape[1] == outdf_expected_cols and combined_df_all.shape[0] == outdf_expected_rows:
if combined_df_all.shape[1] == outdf_expected_cols and combined_df_all['mutationinformation'].nunique() == outdf_expected_rows:
if combined_df_all.shape[0] == outdf_expected_rows and combined_df_all.shape[1] == outdf_expected_cols and combined_df_all['mutationinformation'].nunique() == unique_muts:
print('PASS: Df dimension match'
, '\nDim of combined_df_all with join type:', l_join
, '\ncombined_df_all with join type:', o_join
, '\n', combined_df_all.shape
, '\n===============================================================')
else:
print('FAIL: Df dimension mismatch'
, 'Cannot generate expected dim. See details of merge performed'
, '\ndf1 dim:', combined_df.shape
, '\ndf2 dim:', ors_df.shape
, '\ndf2 dim:', ors_df_ordered.shape
, '\nGot:', combined_df_all.shape
, '\nmuts in df1 but NOT in df2:'
, combined_df['mutationinformation'].isin(ors_df['mutationinformation']).sum()
, combined_df['mutationinformation'].isin(ors_df_ordered['mutationinformation']).sum()
, '\nmuts in df2 but NOT in df1:'
, ors_df['mutationinformation'].isin(combined_df['mutationinformation']).sum())
sys.exit()
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# nan in mutation col
# FIXME: should get fixmed with JP's resolved dataset!?
combined_df_all['mutation'].isna().sum()
baz = combined_df_all[combined_df_all['mutation'].isna()]
# drop extra cols
all_cols = combined_df_all.columns
#pos_cols_check = combined_df_all[['position_x','position_y']]
c = combined_df_all[['position_x','position_y']].isna().sum()
pos_col_to_drop = c.index[c>0].to_list()
cols_to_drop = pos_col_to_drop + ['wild_type_kd']
print('Dropping', len(cols_to_drop), 'columns:\n', cols_to_drop)
combined_df_all.drop(cols_to_drop, axis = 1, inplace = True)
# rename position_x to position
pos_col_to_rename = c.index[c==0].to_list()
combined_df_all.shape
combined_df_all.rename(columns = { pos_col_to_rename[0]: 'position'}, inplace = True)
combined_df_all.shape
all_cols = combined_df_all.columns
#%% reorder cols to for convenience
first_cols = ['mutationinformation','mutation', 'wild_type', 'position', 'mutant_type']
last_cols = [col for col in combined_df_all.columns if col not in first_cols]
combined_df_all = combined_df_all[first_cols+last_cols]
#%% IMPORTANT: check if mutation related info is all populated after this merge
# select string colnames to ensure no NA exist there
string_cols = combined_df_all.columns[combined_df_all.applymap(lambda x: isinstance(x, str)).all(0)]
if (combined_df_all[string_cols].isna().sum(axis = 0)== 0).all():
print('PASS: All string cols are populated with no NAs')
else:
print('FAIL: NAs detected in string cols')
print(combined_df_all[string_cols].isna().sum(axis = 0))
sys.exit()
# relevant mut cols
check_mut_cols = merging_cols_m5 + merging_cols_m6
count_na_mut_cols = combined_df_all[check_mut_cols].isna().sum().reset_index().rename(columns = {'index': 'col_name', 0: 'na_count'})
print(check_mut_cols)
c2 = combined_df_all[check_mut_cols].isna().sum()
missing_info_cols = c2.index[c2>0].to_list()
if c2.sum()>0:
#na_muts_n = combined_df_all['mutation'].isna().sum()
na_muts_n = combined_df_all[missing_info_cols].isna().sum()
print(na_muts_n.values[0], 'mutations have missing \'mutation\' info.'
, '\nFetching these from reference dict...')
else:
print('No missing \'mutation\' has been detected!')
lookup_dict = dict()
for k, v in oneletter_aa_dict.items():
lookup_dict[k] = v['three_letter_code_lower']
print(lookup_dict)
wt_3let = combined_df_all['wild_type'].map(lookup_dict)
#print(wt_3let)
pos = combined_df_all['position'].astype(str)
#print(pos)
mt_3let = combined_df_all['mutant_type'].map(lookup_dict)
#print(mt_3let)
# override the 'mutation' column
combined_df_all['mutation'] = 'pnca_p.' + wt_3let + pos + mt_3let
print(combined_df_all['mutation'])
# check again
if combined_df_all[missing_info_cols].isna().sum().all() == 0:
print('PASS: No mutations have missing \'mutation\' info.')
else:
print('FAIL:', combined_df_all[missing_info_cols].isna().sum().values[0]
, '\nmutations have missing info STILL...')
sys.exit()
#%% check
foo = combined_df_all.drop_duplicates('mutationinformation')
foo2 = combined_df_all.drop_duplicates('mutation')
if foo.equals(foo2):
print('PASS: Dropping mutation or mutatationinformation has the same effect\n')
else:
print('FAIL: Still problems in merged data')
sys.exit()
#%%============================================================================
output_cols = combined_df_all.columns
print('Output cols:', output_cols)
#%% IMPORTANT result info
if combined_df_all['or_mychisq'].isna().sum() == len(combined_df) - len(afor_df):
print('PASS: No. of NA in or_mychisq matches expected length'
, '\nNo. of with NA in or_mychisq:', combined_df_all['or_mychisq'].isna().sum()
, '\nNo. of NA in or_kin:', combined_df_all['or_kin'].isna().sum())
else:
print('FAIL: No. of NA in or_mychisq does not match expected length')
if combined_df_all.shape[0] == outdf_expected_rows:
print('\nINFORMARIONAL ONLY: combined_df_all has duplicate muts present but with unique ref and alt allele'
, '\n=============================================================')
else:
print('combined_df_all has no duplicate muts present'
,'\n===============================================================')
print('\nDim of combined_data:', combined_df_all.shape
, '\nNo. of unique mutations:', combined_df_all['mutationinformation'].nunique())
#%%============================================================================
# write csv

View file

@ -45,8 +45,6 @@ Created on Tue Aug 6 12:56:03 2019
#5. chain
#6. wild_pos
#7. wild_chain_pos
#=======================================================================
#%% load libraries
import os, sys
@ -83,16 +81,16 @@ gene = args.gene
gene_match = gene + '_p.'
print('mut pattern for gene', gene, ':', gene_match)
nssnp_match = gene_match +'[A-Z]{3}[0-9]+[A-Z]{3}'
nssnp_match = gene_match +'[A-Za-z]{3}[0-9]+[A-Za-z]{3}'
print('nsSNP for gene', gene, ':', nssnp_match)
wt_regex = gene_match.lower()+'(\w{3})'
wt_regex = gene_match.lower()+'([A-Za-z]{3})'
print('wt regex:', wt_regex)
mut_regex = r'\d+(\w{3})$'
mut_regex = r'[0-9]+(\w{3})$'
print('mt regex:', mut_regex)
pos_regex = r'(\d+)'
pos_regex = r'([0-9]+)'
print('position regex:', pos_regex)
# building cols to extract
@ -156,30 +154,29 @@ if in_filename_master == 'original_tanushree_data_v2.csv':
else:
core_cols = ['id'
, 'sample'
, 'patient_id'
, 'strain'
#, 'patient_id'
#, 'strain'
, 'lineage'
, 'sublineage'
, 'country'
#, 'country'
, 'country_code'
, 'geographic_source'
#, 'region'
, 'location'
, 'host_body_site'
, 'environment_material'
, 'host_status'
, 'host_sex'
, 'submitted_host_sex'
, 'hiv_status'
, 'HIV_status'
, 'tissue_type'
, 'isolation_source'
#, 'location'
#, 'host_body_site'
#, 'environment_material'
#, 'host_status'
#, 'host_sex'
#, 'submitted_host_sex'
#, 'hiv_status'
#, 'HIV_status'
#, 'tissue_type'
#, 'isolation_source'
, resistance_col]
variable_based_cols = [drug
, dr_muts_col
, other_muts_col]
#, resistance_col]
cols_to_extract = core_cols + variable_based_cols
print('Extracting', len(cols_to_extract), 'columns from master data')
@ -202,7 +199,7 @@ print('No. of NAs/column:' + '\n', meta_data.isna().sum()
#%% Write check file
check_file = outdir + '/' + gene.lower() + '_gwas.csv'
meta_data.to_csv(check_file)
meta_data.to_csv(check_file, index = False)
print('Writing subsetted gwas data'
, '\nFile', check_file
, '\nDim:', meta_data.shape)
@ -217,9 +214,9 @@ print('Writing subsetted gwas data'
# drug counts: complete samples for OR calcs
meta_data[drug].value_counts()
print('===========================================================\n'
, 'RESULT: No. of Sus and Res samples:\n', meta_data[drug].value_counts()
, 'RESULT: No. of Sus and Res', drug, 'samples:\n', meta_data[drug].value_counts()
, '\n===========================================================\n'
, 'RESULT: Percentage of Sus and Res samples:\n', meta_data[drug].value_counts(normalize = True)*100
, 'RESULT: Percentage of Sus and Res', drug, 'samples:\n', meta_data[drug].value_counts(normalize = True)*100
, '\n===========================================================')
#%%
@ -1173,7 +1170,7 @@ del(out_filename_metadata_poscounts)
#%% Write file: gene_metadata (i.e gene_LF1)
# where each row has UNIQUE mutations NOT unique sample ids
out_filename_metadata = gene.lower() + '_metadata.csv'
out_filename_metadata = gene.lower() + '_metadata_raw.csv'
outfile_metadata = outdir + '/' + out_filename_metadata
print('Writing file: LF formatted data'
, '\nFile:', outfile_metadata

211
scripts/ks_test_PS.R Normal file
View file

@ -0,0 +1,211 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: KS test for PS/DUET lineage distributions
#=======================================================================
#=======================================================================
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/")
getwd()
#source("/plotting/Header_TT.R")
#source("../barplot_colour_function.R")
#require(data.table)
source("plotting/combining_dfs_plotting.R")
# should return the following dfs, directories and variables
# PS combined:
# 1) merged_df2
# 2) merged_df2_comp
# 3) merged_df3
# 4) merged_df3_comp
# LIG combined:
# 5) merged_df2_lig
# 6) merged_df2_comp_lig
# 7) merged_df3_lig
# 8) merged_df3_comp_lig
# 9) my_df_u
# 10) my_df_u_lig
cat(paste0("Directories imported:"
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir))
cat(paste0("Variables imported:"
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nAngstrom symbol:", angstroms_symbol
, "\nNo. of duplicated muts:", dup_muts_nu
, "\nNA count for ORs:", na_count
, "\nNA count in df2:", na_count_df2
, "\nNA count in df3:", na_count_df3))
###########################
# Data for stats
# you need merged_df2 or merged_df2_comp
# since this is one-many relationship
# i.e the same SNP can belong to multiple lineages
# using the _comp dataset means
# we lose some muts and at this level, we should use
# as much info as available, hence use df with NA
###########################
# REASSIGNMENT
my_df = merged_df2
# delete variables not required
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
# quick checks
colnames(my_df)
str(my_df)
# Ensure correct data type in columns to plot: need to be factor
is.factor(my_df$lineage)
my_df$lineage = as.factor(my_df$lineage)
is.factor(my_df$lineage)
table(my_df$mutation_info); str(my_df$mutation_info)
# subset df with dr muts only
my_df_dr = subset(my_df, mutation_info == "dr_mutations_pyrazinamide")
table(my_df_dr$mutation_info)
# stats for all muts and dr_muts
# 1) for all muts
# 2) for dr_muts
#===========================
table(my_df$lineage); str(my_df$lineage)
table(my_df_dr$lineage); str(my_df_dr$lineage)
# subset only lineages1-4
sel_lineages = c("lineage1"
, "lineage2"
, "lineage3"
, "lineage4")
# subset and refactor: all muts
df_lin = subset(my_df, subset = lineage %in% sel_lineages)
df_lin$lineage = factor(df_lin$lineage)
# subset and refactor: dr muts
df_lin_dr = subset(my_df_dr, subset = lineage %in% sel_lineages)
df_lin_dr$lineage = factor(df_lin_dr$lineage)
#{RESULT: No of samples within lineage}
table(df_lin$lineage)
table(df_lin_dr$lineage)
#{Result: No. of unique mutations the 4 lineages contribute to}
length(unique(df_lin$mutationinformation))
length(unique(df_lin_dr$mutationinformation))
# COMPARING DISTRIBUTIONS
#================
# ALL mutations
#=================
head(df_lin$lineage)
df_lin$lineage = as.character(df_lin$lineage)
lin1 = df_lin[df_lin$lineage == "lineage1",]$duet_scaled
lin2 = df_lin[df_lin$lineage == "lineage2",]$duet_scaled
lin3 = df_lin[df_lin$lineage == "lineage3",]$duet_scaled
lin4 = df_lin[df_lin$lineage == "lineage4",]$duet_scaled
# ks test
lin12 = ks.test(lin1,lin2)
lin12_df = as.data.frame(cbind(lin12$data.name, lin12$p.value))
lin13 = ks.test(lin1,lin3)
lin13_df = as.data.frame(cbind(lin13$data.name, lin13$p.value))
lin14 = ks.test(lin1,lin4)
lin14_df = as.data.frame(cbind(lin14$data.name, lin14$p.value))
lin23 = ks.test(lin2,lin3)
lin23_df = as.data.frame(cbind(lin23$data.name, lin23$p.value))
lin24 = ks.test(lin2,lin4)
lin24_df = as.data.frame(cbind(lin24$data.name, lin24$p.value))
lin34 = ks.test(lin3,lin4)
lin34_df = as.data.frame(cbind(lin34$data.name, lin34$p.value))
ks_results_all = rbind(lin12_df
, lin13_df
, lin14_df
, lin23_df
, lin24_df
, lin34_df)
#p-value < 2.2e-16
rm(lin12, lin12_df
, lin13, lin13_df
, lin14, lin14_df
, lin23, lin23_df
, lin24, lin24_df
, lin34, lin34_df)
#================
# DRUG mutations
#=================
head(df_lin_dr$lineage)
df_lin_dr$lineage = as.character(df_lin_dr$lineage)
lin1_dr = df_lin_dr[df_lin_dr$lineage == "lineage1",]$duet_scaled
lin2_dr = df_lin_dr[df_lin_dr$lineage == "lineage2",]$duet_scaled
lin3_dr = df_lin_dr[df_lin_dr$lineage == "lineage3",]$duet_scaled
lin4_dr = df_lin_dr[df_lin_dr$lineage == "lineage4",]$duet_scaled
# ks test: dr muts
lin12_dr = ks.test(lin1_dr,lin2_dr)
lin12_df_dr = as.data.frame(cbind(lin12_dr$data.name, lin12_dr$p.value))
lin13_dr = ks.test(lin1_dr,lin3_dr)
lin13_df_dr = as.data.frame(cbind(lin13_dr$data.name, lin13_dr$p.value))
lin14_dr = ks.test(lin1_dr,lin4_dr)
lin14_df_dr = as.data.frame(cbind(lin14_dr$data.name, lin14_dr$p.value))
lin23_dr = ks.test(lin2_dr,lin3_dr)
lin23_df_dr = as.data.frame(cbind(lin23_dr$data.name, lin23_dr$p.value))
lin24_dr = ks.test(lin2_dr,lin4_dr)
lin24_df_dr = as.data.frame(cbind(lin24_dr$data.name, lin24_dr$p.value))
lin34_dr = ks.test(lin3_dr,lin4_dr)
lin34_df_dr = as.data.frame(cbind(lin34_dr$data.name, lin34_dr$p.value))
ks_results_dr = rbind(lin12_df_dr
, lin13_df_dr
, lin14_df_dr
, lin23_df_dr
, lin24_df_dr
, lin34_df_dr)
ks_results_combined = cbind(ks_results_all, ks_results_dr)
my_colnames = c("Lineage_comparisons"
, paste0("All_mutations n=", nrow(df_lin))
, paste0("Drug_associated_mutations n=", nrow(df_lin_dr)))
my_colnames
# select the output columns
ks_results_combined_f = ks_results_combined[,c(1,2,4)]
colnames(ks_results_combined_f) = my_colnames
ks_results_combined_f
#=============
# write output file
#=============
ks_results = paste0(outdir,"/results/ks_results.csv")
write.csv(ks_results_combined_f, ks_results, row.names = F)

View file

@ -104,7 +104,7 @@ or_df.columns
#%% snp_info file: master and gene specific ones
# gene info
info_df2 = pd.read_csv(gene_info, sep = '\t', header = 0) #447, 10
info_df2 = pd.read_csv(gene_info, sep = '\t', header = 0) #447, 11
#info_df2 = pd.read_csv(gene_info, sep = ',', header = 0) #447 10
mis_mut_cover = (info_df2['chromosome_number'].nunique()/info_df2['chromosome_number'].count()) * 100
print('*****RESULT*****'
@ -212,7 +212,7 @@ else:
#PENDING Jody's reply
# !!!!!!!!
# drop nan from dfm2_mis as these are not useful
# drop nan from dfm2_mis as these are not useful and JP confirmed the same
print('Dropping NAs before further processing...')
dfm2_mis = dfm2[dfm2['mut_type'].notnull()]
# !!!!!!!!

View file

@ -1,45 +0,0 @@
#!/usr/bin/env python3
#=======================================================================
#%% useful links
#https://towardsdatascience.com/autoviz-automatically-visualize-any-dataset-ba2691a8b55a
#https://pypi.org/project/autoviz/
#=======================================================================
import os, sys
import pandas as pd
import numpy as np
import re
import argparse
from autoviz.AutoViz_Class import AutoViz_Class
homedir = os.path.expanduser('~')
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
#%%============================================================================
# variables
gene = 'pncA'
drug = 'pyrazinamide'
#%%============================================================================
#==============
# directories
#==============
datadir = homedir + '/' + 'git/Data'
indir = datadir + '/' + drug + '/input'
outdir = datadir + '/' + drug + '/output'
#=======
# input
#=======
in_filename_plotting = 'car_design.csv'
in_filename_plotting = gene.lower() + '_all_params.csv'
infile_plotting = outdir + '/' + in_filename_plotting
print('plotting file: ', infile_plotting
, '\n============================================================')
#=======================================================================
plotting_df = pd.read_csv(infile_plotting, sep = ',')
#Instantiate the AutoViz class
AV = AutoViz_Class()
df = AV.AutoViz(infile_plotting)
#df2 = AV.AutoViz(plotting_df)
plotting_df.columns[~plotting_df.columns.isin(df.columns)]

View file

@ -1,5 +1,4 @@
#!/usr/bin/env Rscript
getwd()
#!/usr/bin/env Rscript getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
getwd()
@ -19,8 +18,7 @@ getwd()
library(ggplot2)
library(data.table)
source("barplot_colour_function.R")
#source("subcols_axis.R")
source("subcols_axis_PS.R")
source("subcols_axis.R")
# should return the following dfs, directories and variables
# mut_pos_cols
@ -161,9 +159,7 @@ min(df$duet_scaled)
max(df$duet_scaled)
# sanity checks
# very important!!!!
tapply(df$duet_scaled, df$duet_outcome, min)
tapply(df$duet_scaled, df$duet_outcome, max)
# My colour FUNCTION: based on group and subgroup
@ -241,7 +237,7 @@ outPlot = g +
, axis.ticks.x = element_blank()) +
labs(title = ""
#title = my_title
, x = "position"
, x = "Position"
, y = "Frequency")
print(outPlot)

View file

@ -1,87 +0,0 @@
,x,,changes,
1,mutationinformation,,Mutationinformation,
2,wild_type,,,consider...wild_aa
3,position,,Position,
4,mutant_type,,,consider...mutant_aa
5,chain,,,
6,ligand_id,,,
7,ligand_distance,,,
8,duet_stability_change,,,
9,duet_outcome,,DUET_outcome,
10,ligand_affinity_change,,,
11,ligand_outcome,,Lig_outcome,
12,duet_scaled,,ratioDUET,
13,affinity_scaled,,ratioPredAff,
14,wild_pos,,WildPos,
15,wild_chain_pos,,,
16,ddg,,,
17,contacts,,,
18,electro_rr,,,
19,electro_mm,,,
20,electro_sm,,,
21,electro_ss,,,
22,disulfide_rr,,,
23,disulfide_mm,,,
24,disulfide_sm,,,
25,disulfide_ss,,,
26,hbonds_rr,,,
27,hbonds_mm,,,
28,hbonds_sm,,,
29,hbonds_ss,,,
30,partcov_rr,,,
31,partcov_mm,,,
32,partcov_sm,,,
33,partcov_ss,,,
34,vdwclashes_rr,,,
35,vdwclashes_mm,,,
36,vdwclashes_sm,,,
37,vdwclashes_ss,,,
38,volumetric_rr,,,
39,volumetric_mm,,,
40,volumetric_sm,,,
41,volumetric_ss,,,
42,wild_type_dssp,,,
43,asa,,,
44,rsa,,,
45,ss,,,
46,ss_class,,,
47,chain_id,,,
48,wild_type_kd,,,
49,kd_values,,,
50,rd_values,,,
51,wt_3letter_caps,,,
52,mutation,,,
53,af,,,
54,beta_logistic,,,
55,or_logistic,,,
56,pval_logistic,,,
57,se_logistic,,,
58,zval_logistic,,,
59,ci_low_logistic,,,
60,ci_hi_logistic,,,
61,or_mychisq,,,
62,or_fisher,,,
63,pval_fisher,,,
64,ci_low_fisher,,,
65,ci_hi_fisher,,,
66,est_chisq,,,
67,pval_chisq,,,
68,chromosome_number,,,
69,ref_allele,,,
70,alt_allele,,,
71,mut_type,,,
72,gene_id,,,
73,gene_number,,,
74,mut_region,,,
75,mut_info,,,
76,chr_num_allele,,,
77,wt_3let,,,
78,mt_3let,,,
79,af_kin,,,
80,or_kin,,,
81,pwald_kin,,,
82,beta_kin,,,
83,se_kin,,,
84,logl_h1_kin,,,
85,l_remle_kin,,,
86,n_miss,,,
Internal server error - Tunstalls' Git

500

Internal server error

An error occurred:

Render failed, failed to render template: repo/pulls/files, error: template error: builtin(bindata):repo/diff/csv_diff:3:15 : executing "repo/diff/csv_diff" at <call .root.CreateCsvDiff .file .blobBase .blobHead>: error calling call: runtime error: invalid memory address or nil pointer dereference
----------------------------------------------------------------------
		{{$result := call .root.CreateCsvDiff .file .blobBase .blobHead}}
		             ^
----------------------------------------------------------------------

Forgejo version: 11.0.1+gitea-1.22.0