adde script to run ml baseline models orig version with feature groups

This commit is contained in:
Tanushree Tunstall 2022-06-21 18:17:56 +01:00
parent 137f19a285
commit fe0986aa28
2 changed files with 562 additions and 4 deletions

View file

@ -419,7 +419,7 @@ def setvars(gene,drug):
#--------------------------------------- #---------------------------------------
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#%% Data for ML ############################################################### #%% Data for ML
#========================== #==========================
# Data for ML # Data for ML
#========================== #==========================
@ -428,7 +428,7 @@ def setvars(gene,drug):
# Build column names to mask for affinity chanhes # Build column names to mask for affinity chanhes
if gene.lower() in geneL_basic: if gene.lower() in geneL_basic:
#X_stabilityN = common_cols_stabiltyN #X_stabilityN = common_cols_stabiltyN
gene_affinity_colnames = []# not needed as its a common one gene_affinity_colnames = []# not needed as its the common ones
cols_to_mask = ['ligand_affinity_change'] cols_to_mask = ['ligand_affinity_change']
if gene.lower() in geneL_ppi2: if gene.lower() in geneL_ppi2:
@ -487,7 +487,6 @@ def setvars(gene,drug):
, 'ddg_foldx' , 'ddg_foldx'
, 'deepddg' , 'deepddg'
, 'ddg_dynamut2' , 'ddg_dynamut2'
, 'mmcsm_lig'
, 'contacts'] , 'contacts']
#-------- #--------
# FoldX # FoldX
@ -506,7 +505,8 @@ def setvars(gene,drug):
# FG3: Affinity features # FG3: Affinity features
#=================== #===================
common_affinity_Fnum = ['ligand_distance' common_affinity_Fnum = ['ligand_distance'
, 'ligand_affinity_change'] , 'ligand_affinity_change'
, 'mmcsm_lig']
# if gene.lower() in geneL_basic: # if gene.lower() in geneL_basic:
# X_affinityFN = common_affinity_Fnum # X_affinityFN = common_affinity_Fnum

558
scripts/ml/run_fg.py Executable file
View file

@ -0,0 +1,558 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May 28 05:25:30 2022
@author: tanu
"""
import os
import re
import argparse
###############################################################################
# gene = 'pncA'
# drug = 'pyrazinamide'
#total_mtblineage_uc = 8
#%% command line args: case sensitive
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('-d', '--drug', help = 'drug name', default = '')
arg_parser.add_argument('-g', '--gene', help = 'gene name', default = '')
args = arg_parser.parse_args()
drug = args.drug
gene = args.gene
###############################################################################
homedir = os.path.expanduser("~")
os.chdir( homedir + '/git/LSHTM_analysis/scripts/ml/')
#==================
# Import data
#==================
from ml_data_dissected import *
setvars(gene,drug)
from ml_data_dissected import *
# from YC run_all_ML: run locally
#from UQ_yc_RunAllClfs import run_all_ML
#====================
# Import ML function
#====================
# TT run all ML clfs: baseline model
from MultModelsCl import MultModelsCl
############################################################################
print('\n#####################################################################\n'
, '\nRunning ML analysis: feature groups '
, '\nGene name:', gene
, '\nDrug name:', drug)
###############################################################################
#==================
# Specify outdir
#==================
outdir_ml = outdir + 'ml/uq_v1/fgs/'
print('\nOutput directory:', outdir_ml)
outFile = outdir_ml + gene.lower() + '_baseline_FG.csv'
#==================
# other vars
#==================
tts_split_name = 'original'
resampling = 'none'
###############################################################################
score_type_ordermapD = { 'mcc' : 1
, 'fscore' : 2
, 'jcc' : 3
, 'precision' : 4
, 'recall' : 5
, 'accuracy' : 6
, 'roc_auc' : 7
, 'TN' : 8
, 'FP' : 9
, 'FN' : 10
, 'TP' : 11
, 'trainingY_neg': 12
, 'trainingY_pos': 13
, 'blindY_neg' : 14
, 'blindY_pos' : 15
, 'fit_time' : 16
, 'score_time' : 17
}
#%%###########################################################################
print('\n================================================================\n')
#all_featuresN = X_evolFN + X_structural_FN + X_genomicFN
# X_structural_FN = X_stability_FN + X_affinityFN + X_resprop_FN
# X_resprop_FN = X_aaindex_Fnum + X_str_Fnum + X_aap_Fcat
print('\n================================================================'
, '\nTotal Evolutionary features (n):' , len(X_evolFN)
, '\n--------------Evol. feature colnames:', X_evolFN
, '\n================================================================'
, '\n\nTotal structural features (n):', len(X_structural_FN)
, '\n--------Stability ncols:' , len(X_stability_FN)
, '\n--------------Common stability colnames:' , X_common_stability_Fnum
, '\n--------------Foldx colnames:' , X_foldX_Fnum
, '\n--------Affinity ncols:' , len(X_affinityFN)
, '\n--------------Common affinity colnames:' , common_affinity_Fnum
, '\n--------------Gene specific affinity colnames:', gene_affinity_colnames
, '\n--------Residue prop ncols:' , len(X_resprop_FN)
, '\n--------------Residue Prop cols:' , X_str_Fnum
, '\n--------------AA change Prop cols:' , X_aap_Fcat
, '\n--------------AA index cols:' , X_aaindex_Fnum
, '\n================================================================'
, '\n\nTotal Genomic features (n):' , len(X_genomicFN)
, '\n--------MAF+OR cols:' , len(X_gn_mafor_Fnum)
, '\n--------------MAF+OR colnames:' , X_gn_mafor_Fnum
, '\n--------Lineage cols:' , len(X_gn_linegae_Fnum)
, '\n--------------Lineage cols:' , X_gn_linegae_Fnum
, '\n--------Other cols:' , len(X_gn_Fcat)
, '\n--------------Other cols:' , X_gn_Fcat
, '\n================================================================')
# Sanity check
if ( len(X.columns) == len(X_evolFN) + len(X_structural_FN) + len(X_genomicFN)):
print('\nPass: No. of features match')
else:
print('\nFail: Count of feature mismatch'
, '\nExpected:', len(X_evolFN) + len(X_structural_FN) + len(X_genomicFN)
, '\nGot:', len(X.columns))
sys.exit()
print('\n#####################################################################\n')
###############################################################################
#================
# Evolutionary
# X_evolFN
#================
feature_gp_nameEV = 'evolutionary'
n_featuresEV = len(X_evolFN)
scores_mmEV = MultModelsCl(input_df = X[X_evolFN]
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts[X_evolFN]
, blind_test_target = y_bts
, add_cm = True
, add_yn = True)
baseline_allEV = pd.DataFrame(scores_mmEV)
baseline_EV = baseline_allEV.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
baseline_EV = baseline_EV.reset_index()
baseline_EV.rename(columns = {'index': 'original_names'}, inplace = True)
# Indicate whether BT or CT
bt_pattern = re.compile(r'bts_.*')
baseline_EV['data_source'] = baseline_EV.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
baseline_EV['score_type'] = baseline_EV['original_names'].str.replace('bts_|test_', '', regex = True)
score_type_uniqueN = set(baseline_EV['score_type'])
cL1 = list(score_type_ordermapD.keys())
cL2 = list(score_type_uniqueN)
if set(cL1).issubset(cL2):
print('\nPASS: sorting df by score that is mapped onto the order I want')
baseline_EV['score_order'] = baseline_EV['score_type'].map(score_type_ordermapD)
baseline_EV.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
else:
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
baseline_EV['feature_group'] = feature_gp_nameEV
baseline_EV['resampling'] = resampling
baseline_EV['tts_split'] = tts_split_name
baseline_EV['n_features'] = n_featuresEV
###############################################################################
#================
# Genomics
# X_genomicFN
#================
feature_gp_nameGN = 'genomics'
n_featuresGN = len(X_genomicFN)
scores_mmGN = MultModelsCl(input_df = X[X_genomicFN]
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts[X_genomicFN]
, blind_test_target = y_bts
, add_cm = True
, add_yn = True)
baseline_allGN = pd.DataFrame(scores_mmGN)
baseline_GN = baseline_allGN.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
baseline_GN = baseline_GN.reset_index()
baseline_GN.rename(columns = {'index': 'original_names'}, inplace = True)
# Indicate whether BT or CT
bt_pattern = re.compile(r'bts_.*')
baseline_GN['data_source'] = baseline_GN.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
baseline_GN['score_type'] = baseline_GN['original_names'].str.replace('bts_|test_', '', regex = True)
score_type_uniqueN = set(baseline_GN['score_type'])
cL1 = list(score_type_ordermapD.keys())
cL2 = list(score_type_uniqueN)
if set(cL1).issubset(cL2):
print('\nPASS: sorting df by score that is mapped onto the order I want')
baseline_GN['score_order'] = baseline_GN['score_type'].map(score_type_ordermapD)
baseline_GN.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
else:
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
baseline_GN['feature_group'] = feature_gp_nameGN
baseline_GN['resampling'] = resampling
baseline_GN['tts_split'] = tts_split_name
baseline_GN['n_features'] = n_featuresGN
###############################################################################
#all_featuresN = X_evolFN + X_structural_FN + X_genomicFN
# X_structural_FN = X_stability_FN + X_affinityFN + X_resprop_FN
# X_resprop_FN = X_aaindex_Fnum + X_str_Fnum + X_aap_Fcat
#================
# Structural cols
# X_structural_FN
#================
feature_gp_nameSTR = 'structural'
n_featuresSTR = len(X_structural_FN)
scores_mmSTR = MultModelsCl(input_df = X[X_structural_FN]
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts[X_structural_FN]
, blind_test_target = y_bts
, add_cm = True
, add_yn = True)
baseline_allSTR = pd.DataFrame(scores_mmSTR)
baseline_STR = baseline_allSTR.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
baseline_STR = baseline_STR.reset_index()
baseline_STR.rename(columns = {'index': 'original_names'}, inplace = True)
# Indicate whether BT or CT
bt_pattern = re.compile(r'bts_.*')
baseline_STR['data_source'] = baseline_STR.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
baseline_STR['score_type'] = baseline_STR['original_names'].str.replace('bts_|test_', '', regex = True)
score_type_uniqueN = set(baseline_STR['score_type'])
cL1 = list(score_type_ordermapD.keys())
cL2 = list(score_type_uniqueN)
if set(cL1).issubset(cL2):
print('\nPASS: sorting df by score that is mapped onto the order I want')
baseline_STR['score_order'] = baseline_STR['score_type'].map(score_type_ordermapD)
baseline_STR.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
else:
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
baseline_STR['feature_group'] = feature_gp_nameSTR
baseline_STR['resampling'] = resampling
baseline_STR['tts_split'] = tts_split_name
baseline_STR['n_features'] = n_featuresSTR
##############################################################################
#================
# Stability cols
# X_stability_FN
#================
feature_gp_nameSTB = 'stability'
n_featuresSTB = len(X_stability_FN)
scores_mmSTB = MultModelsCl(input_df = X[X_stability_FN]
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts[X_stability_FN]
, blind_test_target = y_bts
, add_cm = True
, add_yn = True)
baseline_allSTB = pd.DataFrame(scores_mmSTB)
baseline_STB = baseline_allSTB.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
baseline_STB = baseline_STB.reset_index()
baseline_STB.rename(columns = {'index': 'original_names'}, inplace = True)
# Indicate whether BT or CT
bt_pattern = re.compile(r'bts_.*')
baseline_STB['data_source'] = baseline_STB.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
baseline_STB['score_type'] = baseline_STB['original_names'].str.replace('bts_|test_', '', regex = True)
score_type_uniqueN = set(baseline_STB['score_type'])
cL1 = list(score_type_ordermapD.keys())
cL2 = list(score_type_uniqueN)
if set(cL1).issubset(cL2):
print('\nPASS: sorting df by score that is mapped onto the order I want')
baseline_STB['score_order'] = baseline_STB['score_type'].map(score_type_ordermapD)
baseline_STB.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
else:
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
baseline_STB['feature_group'] = feature_gp_nameSTB
baseline_STB['resampling'] = resampling
baseline_STB['tts_split'] = tts_split_name
baseline_STB['n_features'] = n_featuresSTB
###############################################################################
#================
# Affinity cols
# X_affinityFN
#================
feature_gp_nameAFF = 'affinity'
n_featuresAFF = len(X_affinityFN)
scores_mmAFF = MultModelsCl(input_df = X[X_affinityFN]
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts[X_affinityFN]
, blind_test_target = y_bts
, add_cm = True
, add_yn = True)
baseline_allAFF = pd.DataFrame(scores_mmAFF)
baseline_AFF = baseline_allAFF.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
baseline_AFF = baseline_AFF.reset_index()
baseline_AFF.rename(columns = {'index': 'original_names'}, inplace = True)
# Indicate whether BT or CT
bt_pattern = re.compile(r'bts_.*')
baseline_AFF['data_source'] = baseline_AFF.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
baseline_AFF['score_type'] = baseline_AFF['original_names'].str.replace('bts_|test_', '', regex = True)
score_type_uniqueN = set(baseline_AFF['score_type'])
cL1 = list(score_type_ordermapD.keys())
cL2 = list(score_type_uniqueN)
if set(cL1).issubset(cL2):
print('\nPASS: sorting df by score that is mapped onto the order I want')
baseline_AFF['score_order'] = baseline_AFF['score_type'].map(score_type_ordermapD)
baseline_AFF.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
else:
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
baseline_AFF['feature_group'] = feature_gp_nameAFF
baseline_AFF['resampling'] = resampling
baseline_AFF['tts_split'] = tts_split_name
baseline_AFF['n_features'] = n_featuresAFF
###############################################################################
#================
# Residue level
# X_resprop_FN
#================
feature_gp_nameRES = 'residue_prop'
n_featuresRES = len(X_resprop_FN)
scores_mmRES = MultModelsCl(input_df = X[X_resprop_FN]
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts[X_resprop_FN]
, blind_test_target = y_bts
, add_cm = True
, add_yn = True)
baseline_allRES = pd.DataFrame(scores_mmRES)
baseline_RES = baseline_allRES.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
baseline_RES = baseline_RES.reset_index()
baseline_RES.rename(columns = {'index': 'original_names'}, inplace = True)
# Indicate whether BT or CT
bt_pattern = re.compile(r'bts_.*')
baseline_RES['data_source'] = baseline_RES.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
baseline_RES['score_type'] = baseline_RES['original_names'].str.replace('bts_|test_', '', regex = True)
score_type_uniqueN = set(baseline_RES['score_type'])
cL1 = list(score_type_ordermapD.keys())
cL2 = list(score_type_uniqueN)
if set(cL1).issubset(cL2):
print('\nPASS: sorting df by score that is mapped onto the order I want')
baseline_RES['score_order'] = baseline_RES['score_type'].map(score_type_ordermapD)
baseline_RES.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
else:
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
baseline_RES['feature_group'] = feature_gp_nameRES
baseline_RES['resampling'] = resampling
baseline_RES['tts_split'] = tts_split_name
baseline_RES['n_features'] = n_featuresRES
###############################################################################
#================
# Residue level-AAindex
#X_resprop_FN - X_aaindex_Fnum
#================
X_respropNOaaFN = list(set(X_resprop_FN) - set(X_aaindex_Fnum))
feature_gp_nameRNAA = 'ResPropNoAA'
n_featuresRNAA = len(X_respropNOaaFN)
scores_mmRNAA = MultModelsCl(input_df = X[X_respropNOaaFN]
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts[X_respropNOaaFN]
, blind_test_target = y_bts
, add_cm = True
, add_yn = True)
baseline_allRNAA = pd.DataFrame(scores_mmRNAA)
baseline_RNAA = baseline_allRNAA.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
baseline_RNAA = baseline_RNAA.reset_index()
baseline_RNAA.rename(columns = {'index': 'original_names'}, inplace = True)
# Indicate whether BT or CT
bt_pattern = re.compile(r'bts_.*')
baseline_RNAA['data_source'] = baseline_RNAA.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
baseline_RNAA['score_type'] = baseline_RNAA['original_names'].str.replace('bts_|test_', '', regex = True)
score_type_uniqueN = set(baseline_RNAA['score_type'])
cL1 = list(score_type_ordermapD.keys())
cL2 = list(score_type_uniqueN)
if set(cL1).issubset(cL2):
print('\nPASS: sorting df by score that is mapped onto the order I want')
baseline_RNAA['score_order'] = baseline_RNAA['score_type'].map(score_type_ordermapD)
baseline_RNAA.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
else:
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
baseline_RNAA['feature_group'] = feature_gp_nameRNAA
baseline_RNAA['resampling'] = resampling
baseline_RNAA['tts_split'] = tts_split_name
baseline_RNAA['n_features'] = n_featuresRNAA
###############################################################################
#================
# Structural cols-AAindex
#X_structural_FN - X_aaindex_Fnum
#================
X_strNOaaFN = list(set(X_structural_FN) - set(X_aaindex_Fnum))
feature_gp_nameSNAA = 'StrNoAA'
n_featuresSNAA = len(X_strNOaaFN)
scores_mmSNAA = MultModelsCl(input_df = X[X_strNOaaFN]
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts[X_strNOaaFN]
, blind_test_target = y_bts
, add_cm = True
, add_yn = True)
baseline_allSNAA = pd.DataFrame(scores_mmSNAA)
baseline_SNAA = baseline_allSNAA.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
baseline_SNAA = baseline_SNAA.reset_index()
baseline_SNAA.rename(columns = {'index': 'original_names'}, inplace = True)
# Indicate whether BT or CT
bt_pattern = re.compile(r'bts_.*')
baseline_SNAA['data_source'] = baseline_SNAA.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
baseline_SNAA['score_type'] = baseline_SNAA['original_names'].str.replace('bts_|test_', '', regex = True)
score_type_uniqueN = set(baseline_SNAA['score_type'])
cL1 = list(score_type_ordermapD.keys())
cL2 = list(score_type_uniqueN)
if set(cL1).issubset(cL2):
print('\nPASS: sorting df by score that is mapped onto the order I want')
baseline_SNAA['score_order'] = baseline_SNAA['score_type'].map(score_type_ordermapD)
baseline_SNAA.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
else:
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
baseline_SNAA['feature_group'] = feature_gp_nameSNAA
baseline_SNAA['resampling'] = resampling
baseline_SNAA['tts_split'] = tts_split_name
baseline_SNAA['n_features'] = n_featuresSNAA
###############################################################################
#%% COMBINING all FG dfs
#================
# Combine all
# https://stackoverflow.com/questions/39862654/pandas-concat-of-multiple-data-frames-using-only-common-columns
#================
dfs_combine = [baseline_EV, baseline_GN, baseline_STR, baseline_STB, baseline_AFF, baseline_RES , baseline_RNAA , baseline_SNAA]
dfs_nrows = []
for df in dfs_combine:
dfs_nrows = dfs_nrows + [len(df)]
dfs_nrows = max(dfs_nrows)
dfs_ncols = []
for df in dfs_combine:
dfs_ncols = dfs_ncols + [len(df.columns)]
dfs_ncols = max(dfs_ncols)
# dfs_ncols = []
# dfs_ncols2 = mode(dfs_ncols.append(len(df.columns) for df in dfs_combine)
# dfs_ncols2
expected_nrows = len(dfs_combine) * dfs_nrows
expected_ncols = dfs_ncols
common_cols = list(set.intersection(*(set(df.columns) for df in dfs_combine)))
if len(common_cols) == dfs_ncols :
combined_FG_baseline = pd.concat([df[common_cols] for df in dfs_combine], ignore_index=True)
fgs = combined_FG_baseline[['feature_group', 'n_features']]
fgs = fgs.drop_duplicates()
print('\nConcatenating dfs with feature groups after ML analysis (sampling type):'
, '\nNo. of dfs combining:', len(dfs_combine)
, '\nSampling type:', resampling
, '\nThe feature groups are:'
, '\n', fgs)
if len(combined_FG_baseline) == expected_nrows and len(combined_FG_baseline.columns) == expected_ncols:
print('\nPASS:', len(dfs_combine), 'dfs successfully combined'
, '\nnrows in combined_df:', len(combined_FG_baseline)
, '\nncols in combined_df:', len(combined_FG_baseline.columns))
else:
print('\nFAIL: concatenating failed'
, '\nExpected nrows:', expected_nrows
, '\nGot:', len(combined_FG_baseline)
, '\nExpected ncols:', expected_ncols
, '\nGot:', len(combined_FG_baseline.columns))
sys.exit()
else:
sys.exit('\nConcatenting dfs not possible,check numbers ')
# # rpow bind
# if all(ll((baseline_EV.columns == baseline_GN.columns == baseline_STR.columns)):
# print('\nPASS:colnames match, proceeding to rowbind')
# comb_df = pd.concat()], axis = 0, ignore_index = True )
###############################################################################
#====================
# Write output file
#====================
combined_FG_baseline.to_csv(outFile, index = False)
print('\nFile successfully written:', outFile)
###############################################################################