added AF_and OR calcs script and making it generic
This commit is contained in:
parent
8d1daabff4
commit
fdba990b80
1 changed files with 581 additions and 0 deletions
581
scripts/AF_and_OR_calcs.R
Normal file
581
scripts/AF_and_OR_calcs.R
Normal file
|
@ -0,0 +1,581 @@
|
|||
#########################################################
|
||||
# TASK: To calculate Allele Frequency and
|
||||
# Odds Ratio from master data
|
||||
# and add the calculated params to meta_data extracted from
|
||||
# data_extraction.py
|
||||
#########################################################
|
||||
getwd()
|
||||
setwd('~/git/LSHTM_analysis/scripts')
|
||||
getwd()
|
||||
|
||||
#%% variable assignment: input and output paths & filenames
|
||||
drug = 'pyrazinamide'
|
||||
gene = 'pncA'
|
||||
gene_match = paste0(gene,'_p.')
|
||||
cat(gene_match)
|
||||
|
||||
#===========
|
||||
# input
|
||||
#===========
|
||||
# infile1: Raw data
|
||||
#indir = 'git/Data/pyrazinamide/input/original'
|
||||
indir = paste0('~/git/Data')
|
||||
in_filename = 'original_tanushree_data_v2.csv'
|
||||
#in_filename = 'mtb_gwas_v3.csv'
|
||||
infile = paste0(indir, '/', in_filename)
|
||||
cat(paste0('Reading infile1: raw data', ' ', infile) )
|
||||
|
||||
# infile2: gene associated meta data file to extract valid snps and add calcs to.
|
||||
# This is outfile3 from data_extraction.py
|
||||
indir_metadata = paste0('~/git/Data', '/', drug, '/', 'output')
|
||||
in_filename_metadata = 'pnca_metadata.csv'
|
||||
infile_metadata = paste0(indir_metadata, '/', in_filename_metadata)
|
||||
cat(paste0('Reading infile2: gene associated metadata:', infile_metadata))
|
||||
|
||||
#===========
|
||||
# output
|
||||
#===========
|
||||
# outdir = 'git/Data/pyrazinamide/output'
|
||||
outdir = paste0('~/git/Data', '/', drug, '/', 'output')
|
||||
out_filename = paste0(tolower(gene),'_', 'meta_data_with_AF_OR.csv')
|
||||
outfile = paste0(outdir, '/', out_filename)
|
||||
cat(paste0('Output file with full path:', outfile))
|
||||
#%% end of variable assignment for input and output files
|
||||
|
||||
#########################################################
|
||||
# 1: Read master/raw data stored in Data/
|
||||
#########################################################
|
||||
raw_data_all = read.csv(infile, stringsAsFactors = F)
|
||||
|
||||
# building cols to extract
|
||||
dr_muts_col = paste0('dr_mutations_', drug)
|
||||
other_muts_col = paste0('other_mutations_', drug)
|
||||
|
||||
cat('Extracting columns based on variables:\n'
|
||||
, drug
|
||||
, '\n'
|
||||
, dr_muts_col
|
||||
, '\n'
|
||||
, other_muts_col
|
||||
, '\n===============================================================')
|
||||
|
||||
raw_data = raw_data_all[,c("id"
|
||||
, drug
|
||||
, dr_muts_col
|
||||
, other_muts_col)]
|
||||
rm(raw_data_all)
|
||||
|
||||
rm(indir, in_filename, infile)
|
||||
|
||||
#===========
|
||||
# 1a: exclude na
|
||||
#===========
|
||||
raw_data = raw_data[!is.na(raw_data[[drug]]),]
|
||||
|
||||
total_samples = length(unique(raw_data$id))
|
||||
cat(paste0('Total samples without NA in', ' ', drug, 'is:', total_samples))
|
||||
|
||||
# sanity check: should be true
|
||||
is.numeric(total_samples)
|
||||
|
||||
#===========
|
||||
# 1b: combine the two mutation columns
|
||||
#===========
|
||||
all_muts_colname = paste0('all_mutations_', drug)
|
||||
#raw_data$all_mutations_pyrazinamide = paste(raw_data$dr_mutations_pyrazinamide, raw_data$other_mutations_pyrazinamide)
|
||||
raw_data[[all_muts_colname]] = paste(raw_data[[dr_muts_col]], raw_data[[other_muts_col]])
|
||||
head(raw_data[[all_muts_colname]])
|
||||
|
||||
#===========
|
||||
# 1c: create yet another column that contains all the mutations but in lower case
|
||||
#===========
|
||||
head(raw_data[[all_muts_colname]])
|
||||
raw_data$all_muts_gene = tolower(raw_data[[all_muts_colname]])
|
||||
head(raw_data$all_muts_gene)
|
||||
|
||||
# sanity checks
|
||||
#table(grepl("gene_p",raw_data$all_muts_gene))
|
||||
cat(paste0('converting gene match:', gene_match, ' ', 'to lowercase'))
|
||||
gene_match = tolower(gene_match)
|
||||
|
||||
table(grepl(gene_match,raw_data$all_muts_gene))
|
||||
|
||||
# sanity check: should be TRUE
|
||||
#sum(table(grepl("gene_p",raw_data$all_muts_gene))) == total_samples
|
||||
# sanity check
|
||||
if(sum(table(grepl(gene_match, raw_data$all_muts_gene))) == total_samples){
|
||||
cat('PASS: Total no. of samples match')
|
||||
} else{
|
||||
cat('FAIL: No. of samples mismatch')
|
||||
}
|
||||
|
||||
#########################################################
|
||||
# 2: Read valid snps for which OR
|
||||
# can be calculated
|
||||
#########################################################
|
||||
cat(paste0('Reading metadata infile:', infile_metadata))
|
||||
|
||||
gene_metadata = read.csv(infile_metadata
|
||||
#, file.choose()
|
||||
, stringsAsFactors = F
|
||||
, header = T)
|
||||
|
||||
|
||||
# clear variables
|
||||
rm(in_filename_metadata, infile_metadata)
|
||||
|
||||
# count na in pyrazinamide column
|
||||
tot_pza_na = sum(is.na(gene_metadata$pyrazinamide))
|
||||
expected_rows = nrow(gene_metadata) - tot_pza_na
|
||||
|
||||
# drop na from the pyrazinamide colum
|
||||
gene_snps_or = gene_metadata[!is.na(gene_metadata[[drug]]),]
|
||||
|
||||
# sanity check
|
||||
if(nrow(gene_snps_or) == expected_rows){
|
||||
cat('PASS: no. of rows match with expected_rows')
|
||||
} else{
|
||||
cat('FAIL: nrows mismatch.')
|
||||
}
|
||||
|
||||
# extract unique snps to iterate over for AF and OR calcs
|
||||
gene_snps_unique = unique(gene_snps_or$mutation)
|
||||
|
||||
cat(paste0('Total no. of distinct comp snps to perform OR calcs: ', length(gene_snps_unique)))
|
||||
|
||||
#=====================================
|
||||
#OR calcs using the following 4
|
||||
#1) chisq.test
|
||||
#2) fisher
|
||||
#3) modified chisq.test
|
||||
#4) logistic
|
||||
#5) adjusted logistic?
|
||||
#6) kinship (separate script)
|
||||
|
||||
#======================================
|
||||
# TEST FOR ONE
|
||||
|
||||
i = "pnca_p.ala134gly" # has a NA, should NOT exist
|
||||
table(grepl(i,raw_data$all_muts_gene))
|
||||
|
||||
i = "pnca_p.trp68gly"
|
||||
table(grepl(i,raw_data$all_muts_gene))
|
||||
|
||||
# IV
|
||||
mut = grepl(i,raw_data$all_muts_gene)
|
||||
|
||||
# DV
|
||||
dst = raw_data[[drug]] #or raw_data[,drug]
|
||||
|
||||
table(mut, dst)
|
||||
|
||||
#===============================================
|
||||
# calculating OR
|
||||
|
||||
#1) chisq : noy accurate for low counts
|
||||
chisq.test(table(mut,dst))
|
||||
attributes(chisq.test(table(mut,dst)))
|
||||
chisq.test(table(mut,dst))$p.value
|
||||
|
||||
#2) modified chisq OR: custom function
|
||||
#x = as.numeric(mut)
|
||||
#y = dst
|
||||
my_chisq_or = function(x,y){
|
||||
tab = as.matrix(table(x,y))
|
||||
a = tab[2,2]
|
||||
if (a==0){ a<-0.5}
|
||||
b = tab[2,1]
|
||||
if (b==0){ b<-0.5}
|
||||
c = tab[1,2]
|
||||
if (c==0){ c<-0.5}
|
||||
d = tab[1,1]
|
||||
if (d==0){ d<-0.5}
|
||||
(a/b)/(c/d)
|
||||
}
|
||||
my_chisq_or(mut, dst)
|
||||
|
||||
#3) fisher
|
||||
fisher.test(table(mut, dst))
|
||||
|
||||
or_fisher = fisher.test(table(mut, dst))$estimate; print(or_fisher)
|
||||
pval_fisher = fisher.test(table(mut, dst))$p.value; print(pval_fisher) # the same one to be used for custom chisq_or
|
||||
ci_lb_fisher = fisher.test(table(mut, dst))$conf.int[1]; print(ci_lb_fisher)
|
||||
ci_ub_fisher = fisher.test(table(mut, dst))$conf.int[2]; print(ci_ub_fisher)
|
||||
|
||||
#4) logistic
|
||||
summary(model<-glm(dst ~ mut
|
||||
, family = binomial
|
||||
#, control = glm.control(maxit = 1)
|
||||
#, options(warn = 1)
|
||||
))
|
||||
or_logistic = exp(summary(model)$coefficients[2,1]); print(or_logistic)
|
||||
pval_logistic = summary(model)$coefficients[2,4]; print(pval_logistic)
|
||||
|
||||
|
||||
#5) logistic adjusted: sample id (# identical results as unadjusted)
|
||||
#c = raw_data$id[grepl(i,raw_data$all_muts_gene)]
|
||||
#sid = grepl(paste(c,collapse="|"), raw_data$id) # else warning that pattern length > 1
|
||||
#table(sid)
|
||||
#table(mut, dst, sid)
|
||||
|
||||
#summary(model2<-glm(dst ~ mut + sid
|
||||
# , family = binomial
|
||||
##, control = glm.control(maxit = 1)
|
||||
##, options(warn = 1)
|
||||
# ))
|
||||
#or_logistic2 = exp(summary(model2)$coefficients[2,1]); print(or_logistic2)
|
||||
#pval_logistic2 = summary(model2)$coefficients[2,4]; print(pval_logistic2)
|
||||
|
||||
#===============================================
|
||||
|
||||
######################
|
||||
# AF and OR for all muts: sapply
|
||||
######################
|
||||
print(table(dst)); print(table(mut))
|
||||
|
||||
# af
|
||||
afs = sapply(gene_snps_unique,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
mean(mut)
|
||||
})
|
||||
|
||||
afs
|
||||
head(afs)
|
||||
|
||||
#1) chi square: original
|
||||
stat_chi = sapply(gene_snps_unique,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
chisq.test(mut,dst)$statistic
|
||||
})
|
||||
|
||||
stat_chi
|
||||
head(stat_chi)
|
||||
|
||||
## pval
|
||||
pvals_chi = sapply(gene_snps_unique,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
chisq.test(mut,dst)$p.value
|
||||
})
|
||||
|
||||
pvals_chi
|
||||
head(pvals_chi)
|
||||
|
||||
#2) chi square: custom
|
||||
ors_chi_cus = sapply(gene_snps_unique,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
my_chisq_or(mut,dst)
|
||||
})
|
||||
|
||||
ors_chi_cus
|
||||
head(ors_chi_cus)
|
||||
|
||||
## pval:fisher (use the same one for custom chi sqaure)
|
||||
pvals_fisher = sapply(gene_snps_unique,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
fisher.test(mut,dst)$p.value
|
||||
})
|
||||
|
||||
pvals_fisher
|
||||
head(pvals_fisher)
|
||||
|
||||
#3) fisher
|
||||
ors_fisher = sapply(gene_snps_unique,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
fisher.test(mut,dst)$estimate;
|
||||
})
|
||||
|
||||
ors_fisher
|
||||
head(ors_fisher)
|
||||
|
||||
## fisher ci (lower)
|
||||
ci_lb_fisher = sapply(gene_snps_unique, function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
low_ci = fisher.test(table(mut, dst))$conf.int[1]
|
||||
|
||||
})
|
||||
|
||||
ci_lb_fisher
|
||||
head(ci_lb_fisher)
|
||||
|
||||
## fisher ci (upper)
|
||||
ci_ub_fisher = sapply(gene_snps_unique, function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
up_ci = fisher.test(table(mut, dst))$conf.int[2]
|
||||
|
||||
})
|
||||
|
||||
ci_ub_fisher
|
||||
head(ci_ub_fisher)
|
||||
|
||||
#4) logistic or
|
||||
ors_logistic = sapply(gene_snps_unique,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
#print(table(dst, mut))
|
||||
model<-glm(dst ~ mut , family = binomial)
|
||||
or_logistic = exp(summary(model)$coefficients[2,1])
|
||||
#pval_logistic = summary(model)$coefficients[2,4]
|
||||
})
|
||||
|
||||
ors_logistic
|
||||
head(ors_logistic)
|
||||
|
||||
## logistic p-value
|
||||
pvals_logistic = sapply(gene_snps_unique,function(m){
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
#print(table(dst, mut))
|
||||
model<-glm(dst ~ mut , family = binomial)
|
||||
#or_logistic = exp(summary(model)$coefficients[2,1])
|
||||
pval_logistic = summary(model)$coefficients[2,4]
|
||||
})
|
||||
|
||||
pvals_logistic
|
||||
head(pvals_logistic)
|
||||
|
||||
#=============================================
|
||||
|
||||
# check ..hmmm
|
||||
afs['pnca_p.trp68gly']
|
||||
afs['pnca_p.gln10pro']
|
||||
afs['pnca_p.leu4ser']
|
||||
|
||||
plot(density(log(ors)))
|
||||
plot(-log10(pvals))
|
||||
hist(log(ors)
|
||||
, breaks = 100)
|
||||
|
||||
# sanity check
|
||||
my_vars = c(afs
|
||||
, stat_chi
|
||||
, pvals_chi
|
||||
, ors_chi_cus
|
||||
, pvals_fisher
|
||||
, ors_fisher
|
||||
, ci_lb_fisher
|
||||
, ci_ub_fisher
|
||||
, ors_logistic
|
||||
, pvals_logistic)
|
||||
|
||||
|
||||
my_vars = c('afs', 'pvals_chi', 'ors_chi_cus')
|
||||
|
||||
names(get('afs'))
|
||||
|
||||
# check if names are equal
|
||||
|
||||
|
||||
if ( all(sapply(list(names(afs), names(pvals_chi), names(ors_chi_cus)), function (x) x == names(ors_logistic)))
|
||||
& compare(names(afs), names(pvals_chi), names(ors_chi_cus), names(stat_chi)) ){
|
||||
cat('PASS: names of ors, pvals and afs match: proceed with combining into a single df')
|
||||
} else{
|
||||
cat('FAIL: names of ors, pvals and afs mismatch')
|
||||
}
|
||||
|
||||
|
||||
# FROM HERE
|
||||
if (table(names(ors_fisher) == names(pvals_fisher)) & table(names(ors) == names(afs)) & table(names(pvals) == names(afs)) == length(pnca_snps_unique)){
|
||||
cat('PASS: names of ors, pvals and afs match: proceed with combining into a single df')
|
||||
} else{
|
||||
cat('FAIL: names of ors, pvals and afs mismatch')
|
||||
}
|
||||
|
||||
# combine ors, pvals and afs
|
||||
cat('Combining calculated params into a df: ors, pvals and afs')
|
||||
|
||||
comb_AF_and_OR = data.frame(ors, pvals, afs)
|
||||
cat('No. of rows in comb_AF_and_OR: ', nrow(comb_AF_and_OR)
|
||||
, '\nNo. of cols in comb_AF_and_OR: ', ncol(comb_AF_and_OR))
|
||||
|
||||
cat('Rownames == mutation: ', head(rownames(comb_AF_and_OR)))
|
||||
|
||||
# add rownames of comb_AF_and_OR as an extra column 'mutation' to allow merging based on this column
|
||||
comb_AF_and_OR$mutation = rownames(comb_AF_and_OR)
|
||||
|
||||
# sanity check
|
||||
if (table(rownames(comb_AF_and_OR) == comb_AF_and_OR$mutation)){
|
||||
cat('PASS: rownames and mutaion col values match')
|
||||
}else{
|
||||
cat('FAIL: rownames and mutation col values mismatch')
|
||||
}
|
||||
|
||||
#########################################################
|
||||
# 3: Merge meta data file + calculated num params
|
||||
#########################################################
|
||||
df1 = pnca_metadata
|
||||
df2 = comb_AF_and_OR
|
||||
|
||||
cat('checking commom col of the two dfs before merging:'
|
||||
,'\ndf1:', head(df1$mutation)
|
||||
, '\ndf2:', head(df2$mutation))
|
||||
|
||||
cat(paste0('merging two dfs: '
|
||||
,'\ndf1 (big df i.e. meta data) nrows: ', nrow(df1)
|
||||
,'\ndf2 (small df i.e af, or, pval) nrows: ', nrow(df2)
|
||||
,'\nexpected rows in merged df: ', nrow(df1)
|
||||
,'\nexpected cols in merged_df: ', (ncol(df1) + ncol(df2) - 1)))
|
||||
|
||||
merged_df = merge(df1 # big file
|
||||
, df2 # small (afor file)
|
||||
, by = "mutation"
|
||||
, all.x = T) # because you want all the entries of the meta data
|
||||
|
||||
# sanity check
|
||||
if(ncol(merged_df) == (ncol(df1) + ncol(df2) - 1)){
|
||||
cat(paste0('PASS: no. of cols is as expected: ', ncol(merged_df)))
|
||||
} else{
|
||||
cat('FAIL: no.of cols mistmatch')
|
||||
}
|
||||
|
||||
# quick check
|
||||
i = "pnca_p.ala134gly" # has all NAs in pyrazinamide, should be NA in ors, etc.
|
||||
merged_df[merged_df$mutation == i,]
|
||||
|
||||
# count na in each column
|
||||
na_count = sapply(merged_df, function(y) sum(length(which(is.na(y))))); na_count
|
||||
|
||||
# check last three cols: should be NA
|
||||
if ( identical(na_count[[length(na_count)]], na_count[[length(na_count)-1]], na_count[[length(na_count)-2]])){
|
||||
cat('PASS: No. of NAs for OR, AF and Pvals are equal as expected',
|
||||
'\nNo. of NA: ', na_count[[length(na_count)]])
|
||||
} else {
|
||||
cat('FAIL: No. of NAs for OR, AF and Pvals mismatch')
|
||||
}
|
||||
|
||||
# reassign custom colnames
|
||||
cat('Assigning custom colnames for the calculated params...')
|
||||
colnames(merged_df)[colnames(merged_df)== "ors"] <- "OR"
|
||||
colnames(merged_df)[colnames(merged_df)== "pvals"] <- "pvalue"
|
||||
colnames(merged_df)[colnames(merged_df)== "afs"] <- "AF"
|
||||
|
||||
colnames(merged_df)
|
||||
|
||||
# add 3 more cols: log OR, neglog pvalue and AF_percent cols
|
||||
merged_df$logor = log(merged_df$OR)
|
||||
is.numeric(merged_df$logor)
|
||||
|
||||
merged_df$neglog10pvalue = -log10(merged_df$pvalue)
|
||||
is.numeric(merged_df$neglog10pvalue)
|
||||
|
||||
merged_df$AF_percent = merged_df$AF*100
|
||||
is.numeric(merged_df$AF_percent)
|
||||
|
||||
# check AFs
|
||||
#i = 'pnca_p.trp68gly'
|
||||
i = 'pnca_p.gln10pro'
|
||||
#i = 'pnca_p.leu4ser'
|
||||
merged_df[merged_df$mutation == i,]
|
||||
|
||||
# FIXME: harcoding (beware!), NOT FATAL though!
|
||||
ncol_added = 3
|
||||
|
||||
cat(paste0('Added', ' ', ncol_added, ' more cols to merged_df:'
|
||||
, '\ncols added: logor, neglog10pvalue and AF_percent:'
|
||||
, '\nno. of cols in merged_df now: ', ncol(merged_df)))
|
||||
|
||||
#%% write file out: pnca_meta_data_with_AF_OR
|
||||
#*********************************************
|
||||
cat(paste0('writing output file: '
|
||||
, '\nFilename: ', out_filename
|
||||
, '\nPath:', outdir))
|
||||
|
||||
write.csv(merged_df, outfile
|
||||
, row.names = F)
|
||||
|
||||
cat(paste0('Finished writing:'
|
||||
, out_filename
|
||||
, '\nNo. of rows: ', nrow(merged_df)
|
||||
, '\nNo. of cols: ', ncol(merged_df)))
|
||||
#************************************************
|
||||
cat('======================================================================')
|
||||
rm(out_filename)
|
||||
cat('End of script: calculated AF, OR, pvalues and saved file')
|
||||
# End of script
|
||||
#%%
|
||||
# sanity check: Count NA in these four cols.
|
||||
# However these need to be numeric else these
|
||||
# will be misleading when counting NAs (i.e retrun 0)
|
||||
#is.numeric(meta_with_afor$OR)
|
||||
na_var = c('AF', 'OR', 'pvalue', 'logor', 'neglog10pvalue')
|
||||
|
||||
# loop through these vars and check if these are numeric.
|
||||
# if not, then convert to numeric
|
||||
check_all = NULL
|
||||
|
||||
for (i in na_var){
|
||||
# cat(i)
|
||||
check0 = is.numeric(meta_with_afor[,i])
|
||||
if (check0) {
|
||||
check_all = c(check0, check_all)
|
||||
cat('These are all numeric cols')
|
||||
} else{
|
||||
cat('First converting to numeric')
|
||||
check0 = as.numeric(meta_with_afor[,i])
|
||||
check_all = c(check0, check_all)
|
||||
}
|
||||
}
|
||||
|
||||
# count na now that the respective cols are numeric
|
||||
na_count = sapply(meta_with_afor, function(y) sum(length(which(is.na(y))))); na_count
|
||||
str(na_count)
|
||||
|
||||
# extract how many NAs:
|
||||
# should be all TRUE
|
||||
# should be a single number since
|
||||
# all the cols should have 'equal' and 'same' no. of NAs
|
||||
# compare if the No of 'NA' are the same for all these cols
|
||||
na_len = NULL
|
||||
for (i in na_var){
|
||||
temp = na_count[[i]]
|
||||
na_len = c(na_len, temp)
|
||||
}
|
||||
|
||||
cat('Checking how many NAs and if these are identical for the selected cols:')
|
||||
my_nrows = NULL
|
||||
for ( i in 1: (length(na_len)-1) ){
|
||||
# cat(compare(na_len[i]), na_len[i+1])
|
||||
c = compare(na_len[i], na_len[i+1])
|
||||
if ( c$result ) {
|
||||
cat('PASS: No. of NAa in selected cols are identical')
|
||||
my_nrows = na_len[i] }
|
||||
else {
|
||||
cat('FAIL: No. of NAa in selected cols mismatch')
|
||||
}
|
||||
}
|
||||
|
||||
cat('No. of NAs in each of the selected cols: ', my_nrows)
|
||||
|
||||
# yet more sanity checks:
|
||||
cat('Check whether the ', my_nrows, 'indices are indeed the same')
|
||||
|
||||
#which(is.na(meta_with_afor$OR))
|
||||
|
||||
# initialise an empty df with nrows as extracted above
|
||||
na_count_df = data.frame(matrix(vector(mode = 'numeric'
|
||||
# , length = length(na_var)
|
||||
)
|
||||
, nrow = my_nrows
|
||||
# , ncol = length(na_var)
|
||||
))
|
||||
|
||||
# populate the df with the indices of the cols that are NA
|
||||
for (i in na_var){
|
||||
cat(i)
|
||||
na_i = which(is.na(meta_with_afor[i]))
|
||||
na_count_df = cbind(na_count_df, na_i)
|
||||
colnames(na_count_df)[which(na_var == i)] <- i
|
||||
}
|
||||
|
||||
# Now compare these indices to ensure these are the same
|
||||
check2 = NULL
|
||||
for ( i in 1: ( length(na_count_df)-1 ) ) {
|
||||
# cat(na_count_df[i] == na_count_df[i+1])
|
||||
check_all = identical(na_count_df[[i]], na_count_df[[i+1]])
|
||||
check2 = c(check_all, check2)
|
||||
if ( all(check2) ) {
|
||||
cat('PASS: The indices for AF, OR, etc are all the same\n')
|
||||
} else {
|
||||
cat ('FAIL: Please check indices which are NA')
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue