added combining funct & combining_mcsm_foldx script
This commit is contained in:
parent
4d686e2933
commit
f758c01159
4 changed files with 260 additions and 1 deletions
|
@ -128,7 +128,8 @@ print(merging_cols)
|
|||
nmerging_cols = len(merging_cols)
|
||||
print(' length of merging cols:', nmerging_cols
|
||||
, '\nmerging cols:', merging_cols, 'type:', type(merging_cols))
|
||||
|
||||
|
||||
#https://stackoverflow.com/questions/22720739/pandas-left-outer-join-results-in-table-larger-than-left-table
|
||||
# drop duplicates else the expected rows don't match
|
||||
print('Checking for duplicates in common col:', common_cols
|
||||
, '\nNo of duplicates:'
|
||||
|
|
146
scripts/combining.py
Executable file
146
scripts/combining.py
Executable file
|
@ -0,0 +1,146 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
'''
|
||||
Created on Tue Aug 6 12:56:03 2019
|
||||
|
||||
@author: tanu
|
||||
'''
|
||||
# FIXME: change filename 2(mcsm normalised data)
|
||||
# to be consistent like (pnca_complex_mcsm_norm.csv) : changed manually, but ensure this is done in the mcsm pipeline
|
||||
#=======================================================================
|
||||
# Task: combine 2 dfs with aa position as linking column
|
||||
|
||||
# Input: 2 dfs
|
||||
# <gene.lower()>_complex_mcsm_norm.csv
|
||||
# <gene.lower()>_foldx.csv
|
||||
|
||||
# Output: .csv of all 2 dfs combined
|
||||
|
||||
# useful link
|
||||
# https://stackoverflow.com/questions/23668427/pandas-three-way-joining-multiple-dataframes-on-columns
|
||||
#=======================================================================
|
||||
#%% load packages
|
||||
import sys, os
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
#from varname import nameof
|
||||
|
||||
#%% end of variable assignment for input and output files
|
||||
#=======================================================================
|
||||
#%% function/methd to combine 4 dfs
|
||||
|
||||
#def combine_stability_dfs(mcsm_df, foldx_df, out_combined_df):
|
||||
def combine_stability_dfs(mcsm_df, foldx_df, my_join = 'outer'):
|
||||
"""
|
||||
Combine 2 dfs
|
||||
|
||||
@param mcsm_df: csv file (output from mcsm pipeline)
|
||||
@type mcsm_df: string
|
||||
|
||||
@param foldx_df: csv file (output from runFoldx.py)
|
||||
@type foldx_df: string
|
||||
|
||||
@param out_combined_df: csv file output
|
||||
@type out_combined_df: string
|
||||
|
||||
@return: none, writes combined df as csv
|
||||
"""
|
||||
#========================
|
||||
# read input csv files to combine
|
||||
#========================
|
||||
print('Reading input files:')
|
||||
|
||||
left_df = pd.read_csv(mcsm_df, sep = ',')
|
||||
left_df.columns = left_df.columns.str.lower()
|
||||
|
||||
right_df = pd.read_csv(foldx_df, sep = ',')
|
||||
right_df.columns = right_df.columns.str.lower()
|
||||
|
||||
print('Dimension left df:', left_df.shape
|
||||
, '\nDimesnion right_df:', right_df.shape
|
||||
# , '\njoin type:', join_type
|
||||
, '\n=========================================================')
|
||||
|
||||
print('Finding common cols and merging cols:'
|
||||
,'\n=========================================================')
|
||||
|
||||
|
||||
common_cols = np.intersect1d(left_df.columns, right_df.columns).tolist()
|
||||
print('Length of common cols:', len(common_cols)
|
||||
, '\ncommon column/s:', common_cols, 'type:', type(common_cols))
|
||||
|
||||
print('selecting consistent dtypes for merging (object i.e string)')
|
||||
merging_cols = left_df[common_cols].select_dtypes(include = [object]).columns.tolist()
|
||||
nmerging_cols = len(merging_cols)
|
||||
print(' length of merging cols:', nmerging_cols
|
||||
, '\nmerging cols:', merging_cols, 'type:', type(merging_cols)
|
||||
, '\n=========================================================')
|
||||
|
||||
#========================
|
||||
# merge 1 (combined_df)
|
||||
# concatenating 2dfs:
|
||||
# mcsm_df, foldx_df
|
||||
#========================
|
||||
# checking cross-over of mutations in the two dfs to merge
|
||||
#ndiff1 = left_df.shape[0] - left_df['mutationinformation'].isin(right_df['mutationinformation']).sum()
|
||||
ndiff_1 = left_df[merging_cols].squeeze().isin(right_df[merging_cols].squeeze()).sum()
|
||||
print('ndiff_1:', ndiff_1)
|
||||
|
||||
ndiff1 = left_df.shape[0] - ndiff_1
|
||||
#print('There are', ndiff1, 'unmatched mutations in left df')
|
||||
|
||||
#missing_mutinfo = left_df[~left_df['mutationinformation'].isin(right_df['mutationinformation'])]
|
||||
#missing_mutinfo.to_csv('infoless_muts.csv')
|
||||
|
||||
#ndiff2 = right_df.shape[0] - right_df['mutationinformation'].isin(left_df['mutationinformation']).sum()
|
||||
ndiff_2 = right_df[merging_cols].squeeze().isin(left_df[merging_cols].squeeze()).sum()
|
||||
print('ndiff_2:', ndiff_2)
|
||||
|
||||
ndiff2 = right_df.shape[0] - ndiff_2
|
||||
#print('There are', ndiff2, 'unmatched mutations in right_df')
|
||||
|
||||
comm = np.intersect1d(left_df[merging_cols], right_df[merging_cols])
|
||||
comm_count = len(comm)
|
||||
print('inner:', comm, '\nlength:', comm_count , '\ntype:', type(comm_count))
|
||||
|
||||
#========================
|
||||
# sanity checks for join type
|
||||
#========================
|
||||
fail = False
|
||||
print('combing with:', my_join)
|
||||
combined_df = pd.merge(left_df, right_df, on = merging_cols, how = my_join)
|
||||
combined_df1 = combined_df.drop_duplicates(subset = merging_cols, keep ='first')
|
||||
|
||||
if my_join == 'inner':
|
||||
#expected_rows = left_df.shape[0] - ndiff1
|
||||
expected_rows = comm_count
|
||||
|
||||
if my_join == 'outer':
|
||||
#expected_rows = right_df.shape[0] + ndiff1
|
||||
expected_rows = max(left_df.shape[0], right_df.shape[0])
|
||||
|
||||
if my_join == 'right':
|
||||
expected_rows = right_df.shape[0]
|
||||
|
||||
if my_join == 'left':
|
||||
expected_rows = left_df.shape[0]
|
||||
|
||||
expected_cols = left_df.shape[1] + right_df.shape[1] - nmerging_cols
|
||||
|
||||
if len(combined_df1) == expected_rows and len(combined_df1.columns) == expected_cols:
|
||||
print('PASS: successfully combined dfs with:', my_join, 'join')
|
||||
else:
|
||||
print('FAIL: combined_df\'s expected rows and cols not matched')
|
||||
fail = True
|
||||
print('\nExpected no. of rows:', expected_rows
|
||||
, '\nGot:', len(combined_df1)
|
||||
, '\nExpected no. of cols:', expected_cols
|
||||
, '\nGot:', len(combined_df1.columns))
|
||||
if fail:
|
||||
sys.exit()
|
||||
|
||||
return combined_df1
|
||||
|
||||
#%% end of function
|
||||
#=======================================================================
|
||||
|
112
scripts/combining_mcsm_foldx.py
Executable file
112
scripts/combining_mcsm_foldx.py
Executable file
|
@ -0,0 +1,112 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
'''
|
||||
Created on Tue Aug 6 12:56:03 2019
|
||||
|
||||
@author: tanu
|
||||
'''
|
||||
# FIXME: change filename 2(mcsm normalised data)
|
||||
# to be consistent like (pnca_complex_mcsm_norm.csv) : changed manually, but ensure this is done in the mcsm pipeline
|
||||
#=======================================================================
|
||||
# Task: combine 2 dfs with aa position as linking column
|
||||
|
||||
# Input: 2 dfs
|
||||
# <gene.lower()>_complex_mcsm_norm.csv
|
||||
# <gene.lower()>_foldx.csv
|
||||
|
||||
# Output: .csv of all 2 dfs combined
|
||||
|
||||
# useful link
|
||||
# https://stackoverflow.com/questions/23668427/pandas-three-way-joining-multiple-dataframes-on-columns
|
||||
#=======================================================================
|
||||
#%% load packages
|
||||
import sys, os
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
#from varname import nameof
|
||||
import argparse
|
||||
from combining import combine_stability_dfs
|
||||
#=======================================================================
|
||||
#%% specify input and curr dir
|
||||
homedir = os.path.expanduser('~')
|
||||
|
||||
# set working dir
|
||||
os.getcwd()
|
||||
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
|
||||
os.getcwd()
|
||||
#=======================================================================
|
||||
#%% command line args
|
||||
arg_parser = argparse.ArgumentParser()
|
||||
arg_parser.add_argument('-d', '--drug', help='drug name', default = 'pyrazinamide')
|
||||
arg_parser.add_argument('-g', '--gene', help='gene name', default = 'pncA') # case sensitive
|
||||
args = arg_parser.parse_args()
|
||||
#=======================================================================
|
||||
#%% variable assignment: input and output
|
||||
#drug = 'pyrazinamide'
|
||||
#gene = 'pncA'
|
||||
#gene_match = gene + '_p.'
|
||||
|
||||
drug = args.drug
|
||||
gene = args.gene
|
||||
#======
|
||||
# dirs
|
||||
#======
|
||||
datadir = homedir + '/' + 'git/Data'
|
||||
indir = datadir + '/' + drug + '/' + 'output'
|
||||
outdir = datadir + '/' + drug + '/' + 'output'
|
||||
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
in_filename_mcsm = gene.lower() + '_complex_mcsm_norm.csv'
|
||||
in_filename_foldx = gene.lower() + '_foldx.csv'
|
||||
|
||||
infile_mcsm = indir + '/' + in_filename_mcsm
|
||||
infile_foldx = indir + '/' + in_filename_foldx
|
||||
|
||||
print('\nInput path:', indir
|
||||
, '\nInput filename1:', in_filename_mcsm
|
||||
, '\nInput filename2:', in_filename_foldx
|
||||
, '\n============================================================')
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
out_filename_comb = gene.lower() + '_mcsm_foldx.csv'
|
||||
outfile_comb = outdir + '/' + out_filename_comb
|
||||
print('Output filename:', outfile_comb
|
||||
, '\n============================================================')
|
||||
|
||||
my_join_type = 'outer'
|
||||
#my_join_type = 'left'
|
||||
#my_join_type = 'right'
|
||||
#my_join_type = 'inner'
|
||||
|
||||
# end of variable assignment for input and output files
|
||||
#%% call function
|
||||
#=======================================================================
|
||||
#combine_stability_dfs(mcsm_df, foldx_df, outfile)
|
||||
#=======================================================================
|
||||
def main():
|
||||
|
||||
combined_df = combine_stability_dfs(infile_mcsm, infile_foldx, my_join = my_join_type)
|
||||
print('Combining 2 dfs...'
|
||||
, '\nArguments to function combine_stability_dfs:'
|
||||
, '\ndf1:', in_filename_mcsm
|
||||
, '\ndf2:', in_filename_foldx
|
||||
, '\njoin_type:', my_join_type
|
||||
, '\ncombined df sneak peak:\n'
|
||||
, combined_df.head())
|
||||
|
||||
print('Writing output...')
|
||||
|
||||
combined_df.to_csv(outfile_comb, index = False)
|
||||
|
||||
print('Finished writing output file'
|
||||
, '\nOutput file:', outfile_comb
|
||||
, '\nDimensions:', combined_df.shape)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
#=======================================================================
|
||||
#%% end of script
|
0
scripts/reference_dict.py
Normal file → Executable file
0
scripts/reference_dict.py
Normal file → Executable file
Loading…
Add table
Add a link
Reference in a new issue