modified ks test to output all stats needed in one script

This commit is contained in:
Tanushree Tunstall 2022-08-12 14:35:03 +01:00
parent 22be845e1f
commit f5f1e388c3
3 changed files with 309 additions and 106 deletions

View file

@ -2,55 +2,26 @@
#########################################################
# TASK: KS test for PS/DUET lineage distributions
#=======================================================================
#=======================================================================
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/")
getwd()
#source("~/git/LSHTM_analysis/scripts/Header_TT.R")
#source("../barplot_colour_function.R")
#require(data.table)
source("plotting/combining_dfs_plotting.R")
# should return the following dfs, directories and variables
# PS combined:
# 1) merged_df2
# 2) merged_df2_comp
# 3) merged_df3
# 4) merged_df3_comp
# LIG combined:
# 5) merged_df2_lig
# 6) merged_df2_comp_lig
# 7) merged_df3_lig
# 8) merged_df3_comp_lig
# 9) my_df_u
# 10) my_df_u_lig
cat(paste0("Directories imported:"
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir))
cat(paste0("Variables imported:"
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nAngstrom symbol:", angstroms_symbol
, "\nNo. of duplicated muts:", dup_muts_nu
, "\nNA count for ORs:", na_count
, "\nNA count in df2:", na_count_df2
, "\nNA count in df3:", na_count_df3))
#!/usr/bin/env Rscript
#source("~/git/LSHTM_analysis/config/alr.R")
source("~/git/LSHTM_analysis/config/embb.R")
#source("~/git/LSHTM_analysis/config/katg.R")
#source("~/git/LSHTM_analysis/config/gid.R")
#source("~/git/LSHTM_analysis/config/pnca.R")
#source("~/git/LSHTM_analysis/config/rpob.R")
# get plottting dfs
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
source("~/git/LSHTM_analysis/scripts/plotting/plotting_colnames.R")
#=============
# Output
#=============
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/")
outdir_stats = "~/git/LSHTM_analysis/scripts/plotting/plotting_thesis/stats/"
# ks test by lineage
ks_lineage = paste0(outdir, "/KS_lineage_all_muts.csv")
#ks_lineage = paste0(outdir, "/KS_lineage_all_muts.csv")
###########################
# Data for stats
@ -81,14 +52,19 @@ str(my_df)
table(my_df$lineage); str(my_df$lineage)
# subset only lineages1-4
sel_lineages = c("lineage1"
, "lineage2"
, "lineage3"
, "lineage4")
sel_lineages = c("L1"
, "L2"
, "L3"
, "L4")
# subset selected lineages
df_lin = subset(my_df, subset = lineage %in% sel_lineages)
table(df_lin$lineage)
table(df_lin$sensitivity)
table(df_lin$lineage, df_lin$sensitivity)
#==============
# dr_muts_col
#==============
@ -106,16 +82,16 @@ df_lin = subset(my_df, subset = lineage %in% sel_lineages)
#=======================================================================
# individual: CHECKS
lin1 = df_lin[df_lin$lineage == "lineage1",]$duet_scaled
lin2 = df_lin[df_lin$lineage == "lineage2",]$duet_scaled
lin3 = df_lin[df_lin$lineage == "lineage3",]$duet_scaled
lin4 = df_lin[df_lin$lineage == "lineage4",]$duet_scaled
lin1 = df_lin[df_lin$lineage == "L1",]$avg_stability_scaled
lin2 = df_lin[df_lin$lineage == "L2",]$avg_stability_scaled
lin3 = df_lin[df_lin$lineage == "L3",]$avg_stability_scaled
lin4 = df_lin[df_lin$lineage == "L4",]$avg_stability_scaled
ks.test(lin1, lin4)
ks.test(df_lin$duet_scaled[df_lin$lineage == "lineage1"]
, df_lin$duet_scaled[df_lin$lineage == "lineage2"])
ks.test(df_lin$avg_stability_scaled[df_lin$lineage == "L2"]
, df_lin$avg_stability_scaled[df_lin$lineage == "L3"])
#=======================================================================
my_lineages = levels(factor(df_lin$lineage)); my_lineages
@ -124,31 +100,43 @@ my_lineages = levels(factor(df_lin$lineage)); my_lineages
#=====================
# Lineage 1 comparisons
#=====================
my_lin1 = "lineage1"
#my_lineages_comp_l1 = c("lineage2", "lineage3", "lineage4")
my_lin1 = "L1"
#my_lineages_comp_l1 = c("L2", "L3", "L4")
my_lineages_comp_l1 = my_lineages[-match(my_lin1, my_lineages)]
ks_df_l1 = data.frame()
for (i in my_lineages_comp_l1){
cat(i)
l1_df = data.frame(group = NA, method = NA, ks_statistic = NA, ks_pvalue = NA)
l1_df = data.frame(comparison = NA, method = NA, ks_statistic = NA, ks_pvalue = NA
, n_samples = NA
, n_samples_total = NA)
lineage_comp = paste0(my_lin1, " vs ", i)
ks_method = ks.test(df_lin$duet_scaled[df_lin$lineage == my_lin1]
, df_lin$duet_scaled[df_lin$lineage == i])$method
n_samples_lin = nrow(df_lin[df_lin$lineage == my_lin1,])
n_samples_i = nrow(df_lin[df_lin$lineage == i,])
n_samples_all = paste0(my_lin1, "(", n_samples_lin, ")"
, ", "
, i, "(", n_samples_i, ")")
ks_statistic = ks.test(df_lin$duet_scaled[df_lin$lineage == my_lin1]
, df_lin$duet_scaled[df_lin$lineage == i])$statistic
n_samples_total = n_samples_lin + n_samples_i
ks_method = ks.test(df_lin$avg_stability_scaled[df_lin$lineage == my_lin1]
, df_lin$avg_stability_scaled[df_lin$lineage == i])$method
ks_pvalue = ks.test(df_lin$duet_scaled[df_lin$lineage == my_lin1]
, df_lin$duet_scaled[df_lin$lineage == i])$p.value
ks_statistic = ks.test(df_lin$avg_stability_scaled[df_lin$lineage == my_lin1]
, df_lin$avg_stability_scaled[df_lin$lineage == i])$statistic
ks_pvalue = ks.test(df_lin$avg_stability_scaled[df_lin$lineage == my_lin1]
, df_lin$avg_stability_scaled[df_lin$lineage == i])$p.value
# print(c(lineage_comp, ks_method, ks_statistic[[1]], ks_pval))
l1_df$group = lineage_comp
l1_df$method = ks_method
l1_df$ks_statistic = ks_statistic[[1]]
l1_df$ks_pvalue = ks_pvalue
l1_df$comparison = lineage_comp
l1_df$method = ks_method
l1_df$ks_statistic = ks_statistic[[1]]
l1_df$ks_pvalue = ks_pvalue
l1_df$n_samples = n_samples_all
l1_df$n_samples_total= n_samples_total
print(l1_df)
ks_df_l1 = rbind(ks_df_l1,l1_df)
@ -159,31 +147,43 @@ for (i in my_lineages_comp_l1){
#=====================
# Lineage 2 comparisons
#=====================
my_lin2 = "lineage2"
#my_lineages_comp_l2 = c("lineage1", lineage3", "lineage4")
my_lin2 = "L2"
#my_lineages_comp_l2 = c("L1", lineage3", "L4")
my_lineages_comp_l2 = my_lineages[-match(my_lin2, my_lineages)]
ks_df_l2 = data.frame()
for (i in my_lineages_comp_l2){
cat(i)
l2_df = data.frame(group = NA, method = NA, ks_statistic = NA, ks_pvalue = NA)
l2_df = data.frame(comparison = NA, method = NA, ks_statistic = NA, ks_pvalue = NA
, n_samples = NA
, n_samples_total = NA)
lineage_comp = paste0(my_lin2, " vs ", i)
ks_method = ks.test(df_lin$duet_scaled[df_lin$lineage == my_lin2]
, df_lin$duet_scaled[df_lin$lineage == i])$method
n_samples_lin = nrow(df_lin[df_lin$lineage == my_lin2,])
n_samples_i = nrow(df_lin[df_lin$lineage == i,])
n_samples_all = paste0(my_lin2, "(", n_samples_lin, ")"
, ", "
, i, "(", n_samples_i, ")")
ks_statistic = ks.test(df_lin$duet_scaled[df_lin$lineage == my_lin2]
, df_lin$duet_scaled[df_lin$lineage == i])$statistic
n_samples_total = n_samples_lin + n_samples_i
ks_pvalue = ks.test(df_lin$duet_scaled[df_lin$lineage == my_lin2]
, df_lin$duet_scaled[df_lin$lineage == i])$p.value
ks_method = ks.test(df_lin$avg_stability_scaled[df_lin$lineage == my_lin2]
, df_lin$avg_stability_scaled[df_lin$lineage == i])$method
ks_statistic = ks.test(df_lin$avg_stability_scaled[df_lin$lineage == my_lin2]
, df_lin$avg_stability_scaled[df_lin$lineage == i])$statistic
ks_pvalue = ks.test(df_lin$avg_stability_scaled[df_lin$lineage == my_lin2]
, df_lin$avg_stability_scaled[df_lin$lineage == i])$p.value
# print(c(lineage_comp, ks_method, ks_statistic[[1]], ks_pval))
l2_df$group = lineage_comp
l2_df$method = ks_method
l2_df$ks_statistic = ks_statistic[[1]]
l2_df$ks_pvalue = ks_pvalue
l2_df$comparison = lineage_comp
l2_df$method = ks_method
l2_df$ks_statistic = ks_statistic[[1]]
l2_df$ks_pvalue = ks_pvalue
l2_df$n_samples = n_samples_all
l2_df$n_samples_total = n_samples_total
print(l2_df)
ks_df_l2 = rbind(ks_df_l2, l2_df)
@ -193,38 +193,52 @@ for (i in my_lineages_comp_l2){
#=====================
# Lineage 3 comparisons
#=====================
my_lin3 = "lineage3"
#my_lineages_comp_l3 = c("lineage1", lineage2", "lineage4")
my_lin3 = "L3"
#my_lineages_comp_l3 = c("L1", lineage2", "L4")
my_lineages_comp_l3 = my_lineages[-match(my_lin3, my_lineages)]
ks_df_l3 = data.frame()
for (i in my_lineages_comp_l3){
cat(i)
l3_df = data.frame(group = NA, method = NA, ks_statistic = NA, ks_pvalue = NA)
l3_df = data.frame(comparison = NA, method = NA, ks_statistic = NA, ks_pvalue = NA
, n_samples = NA
, n_samples_total = NA)
lineage_comp = paste0(my_lin3, " vs ", i)
ks_method = ks.test(df_lin$duet_scaled[df_lin$lineage == my_lin3]
, df_lin$duet_scaled[df_lin$lineage == i])$method
n_samples_lin = nrow(df_lin[df_lin$lineage == my_lin3,])
n_samples_i = nrow(df_lin[df_lin$lineage == i,])
n_samples_all = paste0(my_lin3, "(", n_samples_lin, ")"
, ", "
, i, "(", n_samples_i, ")")
n_samples_total = n_samples_lin + n_samples_i
ks_statistic = ks.test(df_lin$duet_scaled[df_lin$lineage == my_lin3]
, df_lin$duet_scaled[df_lin$lineage == i])$statistic
ks_method = ks.test(df_lin$avg_stability_scaled[df_lin$lineage == my_lin3]
, df_lin$avg_stability_scaled[df_lin$lineage == i])$method
ks_pvalue = ks.test(df_lin$duet_scaled[df_lin$lineage == my_lin3]
, df_lin$duet_scaled[df_lin$lineage == i])$p.value
ks_statistic = ks.test(df_lin$avg_stability_scaled[df_lin$lineage == my_lin3]
, df_lin$avg_stability_scaled[df_lin$lineage == i])$statistic
ks_pvalue = ks.test(df_lin$avg_stability_scaled[df_lin$lineage == my_lin3]
, df_lin$avg_stability_scaled[df_lin$lineage == i])$p.value
# print(c(lineage_comp, ks_method, ks_statistic[[1]], ks_pval))
l3_df$group = lineage_comp
l3_df$method = ks_method
l3_df$ks_statistic = ks_statistic[[1]]
l3_df$ks_pvalue = ks_pvalue
l3_df$comparison = lineage_comp
l3_df$method = ks_method
l3_df$ks_statistic = ks_statistic[[1]]
l3_df$ks_pvalue = ks_pvalue
l3_df$n_samples = n_samples_all
l3_df$n_samples_total = n_samples_total
print(l3_df)
ks_df_l3 = rbind(ks_df_l3, l3_df)
}
######################################################################################
####################################################################
# combine all three ks_dfs
# combine all 4 ks_dfs
n_dfs = 3
if ( all.equal(nrow(ks_df_l1), nrow(ks_df_l2), nrow(ks_df_l3)) &&
all.equal(ncol(ks_df_l1), ncol(ks_df_l2), ncol(ks_df_l3)) ){
@ -249,11 +263,11 @@ if ( all.equal(nrow(ks_df_l1), nrow(ks_df_l2), nrow(ks_df_l3)) &&
, "\nCheck hardcoded value of n_dfs")
}
#=======================================================================
#--------------
# formatting
#=======================================================================
#--------------
# add total_n number
ks_df_combined$total_samples_analysed = nrow(df_lin)
#ks_df_combined$total_samples_analysed = nrow(df_lin)
# adding pvalue_signif
ks_df_combined$pvalue_signif = ks_df_combined$ks_pvalue
@ -268,13 +282,192 @@ ks_df_combined = dplyr::mutate(ks_df_combined
, TRUE ~ 'ns'))
# Remove duplicates
rows_to_remove = c("lineage2 vs lineage1", "lineage3 vs lineage1", "lineage3 vs lineage2")
rows_to_remove = c("L2 vs L1", "L3 vs L1", "L3 vs L2")
ks_df_combined_f = ks_df_combined[-match(rows_to_remove, ks_df_combined$group),]
ks_df_combined_f = ks_df_combined[-match(rows_to_remove, ks_df_combined$comparison),]
#################################################################################
#================================
# R vs S distribution: Overall
#=================================
df_lin_R = df_lin[df_lin$sensitivity == "R",]
df_lin_S = df_lin[df_lin$sensitivity == "S",]
#=======================================================================
#******************
# write output file: KS test
#******************
cat("Output of KS test bt lineage:", ks_lineage)
write.csv(ks_df_combined_f, ks_lineage, row.names = FALSE)
overall_RS_df = data.frame(comparison = NA, method = NA, ks_statistic = NA, ks_pvalue = NA
, n_samples = NA
, n_samples_total = NA)
comp_type = "overall R vs S distributions"
n_samples_R = nrow(df_lin_R)
n_samples_S = nrow(df_lin_S)
n_samples_all = paste0("R(n=", n_samples_R, ")" , " ", "S(n=", n_samples_S, ")")
n_samples_total = n_samples_R+n_samples_S
ks.test(df_lin_R$avg_stability_scaled
, df_lin_S$avg_stability_scaled)
ks_method = ks.test(df_lin_R$avg_stability_scaled
, df_lin_S$avg_stability_scaled)$method
ks_statistic = ks.test(df_lin_R$avg_stability_scaled
, df_lin_S$avg_stability_scaled)$statistic
ks_pvalue = ks.test(df_lin_R$avg_stability_scaled
, df_lin_S$avg_stability_scaled)$p.value
overall_RS_df$comparison = comp_type
overall_RS_df$method = ks_method
overall_RS_df$ks_statistic = ks_statistic
overall_RS_df$ks_pvalue = ks_pvalue
overall_RS_df$n_samples = n_samples_all
overall_RS_df$n_samples_total= n_samples_total
#--------------
# formatting
#--------------
overall_RS_df$pvalue_signif = overall_RS_df$ks_pvalue
overall_RS_df = dplyr::mutate(overall_RS_df
, pvalue_signif = case_when(pvalue_signif == 0.05 ~ "."
, pvalue_signif <=0.0001 ~ '****'
, pvalue_signif <=0.001 ~ '***'
, pvalue_signif <=0.01 ~ '**'
, pvalue_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
overall_RS_df
#####################################################################
if (all(colnames(ks_df_combined_f) == colnames(overall_RS_df))){
cat("\nPASS:combining KS test results")
}else{
stop("\nAbort: Cannot combine results for KS test")
}
ks_df_combined_f2 = rbind(ks_df_combined_f, overall_RS_df)
# ADD extra cols
ks_df_combined_f2$ks_comp_type = "between_lineages"
ks_df_combined_f2$gene_name = tolower(gene)
# #==============================
# # write output file: KS test
# #===============================
# Out_lineage_bwL = paste0(outdir_stats
# , tolower(gene)
# , "_ks_lineage_bw.csv")
#
# cat("Output of KS test bt lineage:", Out_lineage_bwL)
# write.csv(ks_df_combined_f2, Out_lineage_bwL, row.names = FALSE)
###########################################################################
#=======================
# Within lineage R vs S: MANUAL
#=======================
lin1 = df_lin[df_lin$lineage == my_lin1,]
ks.test(lin1$avg_stability_scaled[lin1$sensitivity == "R"]
, lin1$avg_stability_scaled[lin1$sensitivity == "S"])
lin2 = df_lin[df_lin$lineage == my_lin2,]
ks.test(lin2$avg_stability_scaled[lin2$sensitivity == "R"]
, lin2$avg_stability_scaled[lin2$sensitivity == "S"])
lin3 = df_lin[df_lin$lineage == "L3",]
ks.test(lin3$avg_stability_scaled[lin3$sensitivity == "R"]
, lin3$avg_stability_scaled[lin3$sensitivity == "S"])
lin4 = df_lin[df_lin$lineage == "L4",]
ks.test(lin4$avg_stability_scaled[lin4$sensitivity == "R"]
, lin4$avg_stability_scaled[lin4$sensitivity == "S"])
###################################################################
#=======================
# Within lineage R vs S: LOOP
#=======================
all_within_lin_df = data.frame()
for (i in c(my_lin1
, my_lin2
, my_lin3
)){
#cat(i)
within_lin_df = data.frame(comparison = NA, method = NA, ks_statistic = NA, ks_pvalue = NA
, n_samples = NA
, n_samples_total = NA)
within_lineage_comp = paste0(i, ": R vs S")
my_lin_df = df_lin[df_lin$lineage == i,]
lin_R_n = nrow(my_lin_df[my_lin_df$sensitivity == "R",])
lin_S_n = nrow(my_lin_df[my_lin_df$sensitivity == "S",])
lin_total_n = lin_R_n+lin_S_n
n_samples_all = paste0("R(n=", lin_R_n, ")" , ", ", "S(n=", lin_S_n, ")")
ks_method = ks.test(my_lin_df$avg_stability_scaled[my_lin_df$sensitivity == "R"]
, my_lin_df$avg_stability_scaled[my_lin_df$sensitivity == "S"])$method
ks_statistic = ks.test(my_lin_df$avg_stability_scaled[my_lin_df$sensitivity == "R"]
, my_lin_df$avg_stability_scaled[my_lin_df$sensitivity == "S"])$statistic
ks_pvalue =ks.test(my_lin_df$avg_stability_scaled[my_lin_df$sensitivity == "R"]
, my_lin_df$avg_stability_scaled[my_lin_df$sensitivity == "S"])$p.value
# print(c(lineage_comp, ks_method, ks_statistic[[1]], ks_pval))
within_lin_df$comparison = within_lineage_comp
within_lin_df$method = ks_method
within_lin_df$ks_statistic = ks_statistic[[1]]
within_lin_df$ks_pvalue = ks_pvalue
within_lin_df$n_samples = n_samples_all
within_lin_df$n_samples_total=lin_total_n
print(my_lin_df)
all_within_lin_df = rbind(all_within_lin_df, within_lin_df)
}
all_within_lin_df
all_within_lin_df$pvalue_signif = all_within_lin_df$ks_pvalue
str(all_within_lin_df$pvalue_signif)
all_within_lin_df = dplyr::mutate(all_within_lin_df
, pvalue_signif = case_when(pvalue_signif == 0.05 ~ "."
, pvalue_signif <=0.0001 ~ '****'
, pvalue_signif <=0.001 ~ '***'
, pvalue_signif <=0.01 ~ '**'
, pvalue_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
all_within_lin_df
# ADD extra cols
all_within_lin_df$ks_comp_type = "within_lineages"
all_within_lin_df$gene_name = tolower(gene)
# #--------------------
# # write output file: KS test within grpup
# #----------------------
# Out_ks_withinL = paste0(outdir_stats
# , tolower(gene)
# , "_ks_lineage_within.csv")
# cat("Output of KS test within lineage:",Out_ks_withinL )
# write.csv(all_within_lin_df, Out_ks_withinL, row.names = FALSE)
##################################################################
if (all(colnames(ks_df_combined_f2) == colnames(Out_ks_withinL))){
cat("\nPASS:combining KS test results")
}else{
stop("\nAbort: Cannot combine results for KS test")
}
ks_df_combined_all = rbind(ks_df_combined_f2, all_within_lin_df)
#--------------------
# write output file: KS test within grpup
#----------------------
Out_ks_all = paste0(outdir_stats
, tolower(gene)
, "_ks_lineage_all_comp.csv")
cat("Output of KS test all comparisons:", Out_ks_all )
write.csv(ks_df_combined_all, Out_ks_all, row.names = FALSE)