added katg and rpob files
This commit is contained in:
parent
7c2e4b898e
commit
f39bbdcce7
9 changed files with 3145 additions and 0 deletions
226
scripts/plotting/plotting_thesis/rpob/rpob_ORandSNP_results.R
Normal file
226
scripts/plotting/plotting_thesis/rpob/rpob_ORandSNP_results.R
Normal file
|
@ -0,0 +1,226 @@
|
|||
#!/usr/bin/env Rscript
|
||||
#source("~/git/LSHTM_analysis/config/katg.R")
|
||||
#source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/")
|
||||
outdir_stats = paste0(outdir_images,"stats/")
|
||||
|
||||
###################################################################
|
||||
# FIXME: ADD distance to NA when SP replies
|
||||
|
||||
geneL_normal = c("pnca")
|
||||
geneL_na = c("gid", "rpob")
|
||||
geneL_ppi2 = c("alr", "embb", "katg", "rpob")
|
||||
|
||||
# LigDist_colname # from globals used
|
||||
# ppi2Dist_colname #from globals used
|
||||
# naDist_colname #from globals used
|
||||
|
||||
dist_columns = c(LigDist_colname, ppi2Dist_colname, naDist_colname )
|
||||
|
||||
common_cols = c("mutationinformation"
|
||||
, "X5uhc_position"
|
||||
, "X5uhc_offset"
|
||||
, "position"
|
||||
, "dst_mode"
|
||||
, "mutation_info_labels"
|
||||
, "sensitivity", dist_columns )
|
||||
|
||||
########################################
|
||||
categ_cols_to_factor = grep( "_outcome|_info", colnames(merged_df3) )
|
||||
fact_cols = colnames(merged_df3)[categ_cols_to_factor]
|
||||
|
||||
if (any(lapply(merged_df3[, fact_cols], class) == "character")){
|
||||
cat("\nChanging", length(categ_cols_to_factor), "cols to factor")
|
||||
merged_df3[, fact_cols] <- lapply(merged_df3[, fact_cols], as.factor)
|
||||
if (all(lapply(merged_df3[, fact_cols], class) == "factor")){
|
||||
cat("\nSuccessful: cols changed to factor")
|
||||
}
|
||||
}else{
|
||||
cat("\nRequested cols aready factors")
|
||||
}
|
||||
|
||||
cat("\ncols changed to factor are:\n", colnames(merged_df3)[categ_cols_to_factor] )
|
||||
|
||||
####################################
|
||||
# merged_df3: NECESSARY pre-processing
|
||||
###################################
|
||||
#df3 = merged_df3
|
||||
all_cols = c(common_cols
|
||||
, all_stability_cols
|
||||
, all_affinity_cols
|
||||
, all_conserv_cols)
|
||||
|
||||
plot_cols = c("mutationinformation", "mutation_info_labels", "position", "dst_mode"
|
||||
#, all_cols
|
||||
)
|
||||
|
||||
# counting
|
||||
foo = merged_df3[, c("mutationinformation"
|
||||
, "wild_pos"
|
||||
, "position"
|
||||
, "sensitivity"
|
||||
, "avg_lig_affinity"
|
||||
, "avg_lig_affinity_scaled"
|
||||
, "avg_lig_affinity_outcome"
|
||||
, "ligand_distance"
|
||||
, "ligand_affinity_change"
|
||||
, "affinity_scaled"
|
||||
, "ligand_outcome"
|
||||
, "consurf_colour_rev"
|
||||
, "consurf_outcome")]
|
||||
|
||||
table(foo$consurf_outcome)
|
||||
foo2 = foo[foo$ligand_distance<10,]
|
||||
|
||||
table(foo2$ligand_outcome)
|
||||
|
||||
#############################
|
||||
# wide plots SNP
|
||||
# DRUG
|
||||
length(aa_pos_drug); aa_pos_drug
|
||||
drug = foo[foo$position%in%aa_pos_drug,]
|
||||
drug$wild_pos
|
||||
#CA
|
||||
###############################################
|
||||
# OR
|
||||
###############################################
|
||||
# OR plot
|
||||
df3_or = merged_df3
|
||||
df3_or$maf_percent = df3_or$maf*100
|
||||
|
||||
bar = df3_or[, c("mutationinformation"
|
||||
, "wild_pos"
|
||||
, "position"
|
||||
, "sensitivity"
|
||||
, drug
|
||||
, affinity_dist_colnames
|
||||
, "maf_percent"
|
||||
, "or_mychisq"
|
||||
, "pval_fisher"
|
||||
#, "pval_chisq"
|
||||
, "neglog_pval_fisher"
|
||||
, "log10_or_mychisq")]
|
||||
|
||||
# bar$p_adj_bonferroni = p.adjust(bar$pval_fisher, method = "bonferroni")
|
||||
# bar$signif_bon = bar$p_adj_bonferroni
|
||||
# bar = dplyr::mutate(bar
|
||||
# , signif_bon = case_when(signif_bon == 0.05 ~ "."
|
||||
# , signif_bon <=0.0001 ~ '****'
|
||||
# , signif_bon <=0.001 ~ '***'
|
||||
# , signif_bon <=0.01 ~ '**'
|
||||
# , signif_bon <0.05 ~ '*'
|
||||
# , TRUE ~ 'ns'))
|
||||
|
||||
bar$p_adj_fdr = p.adjust(bar$pval_fisher, method = "BH")
|
||||
bar$signif_fdr = bar$p_adj_fdr
|
||||
bar = dplyr::mutate(bar
|
||||
, signif_fdr = case_when(signif_fdr == 0.05 ~ "."
|
||||
, signif_fdr <=0.0001 ~ '****'
|
||||
, signif_fdr <=0.001 ~ '***'
|
||||
, signif_fdr <=0.01 ~ '**'
|
||||
, signif_fdr <0.05 ~ '*'
|
||||
, TRUE ~ 'ns'))
|
||||
|
||||
# sort df
|
||||
bar = bar[order(bar$or_mychisq, decreasing = T), ]
|
||||
bar = bar[, c("mutationinformation"
|
||||
, "wild_pos"
|
||||
, "position"
|
||||
, "sensitivity"
|
||||
, drug
|
||||
, affinity_dist_colnames
|
||||
, "maf_percent"
|
||||
, "or_mychisq"
|
||||
#, "pval_fisher"
|
||||
#, "pval_chisq"
|
||||
#, "neglog_pval_fisher"
|
||||
#, "log10_or_mychisq"
|
||||
#, "signif_bon"
|
||||
, "p_adj_fdr"
|
||||
, "signif_fdr")]
|
||||
|
||||
table(bar$sensitivity)
|
||||
|
||||
str(bar)
|
||||
sen = bar[bar$or_mychisq<1,]
|
||||
sen = na.omit(sen)
|
||||
|
||||
res = bar[bar$or_mychisq>1,]
|
||||
res = na.omit(res)
|
||||
|
||||
# comp
|
||||
bar_or = bar[!is.na(bar$or_mychisq),]
|
||||
table(bar_or$sensitivity)
|
||||
|
||||
sen1 = bar_or[bar_or$or_mychisq<1,] # sen and res ~OR
|
||||
res1 = bar_or[bar_or$or_mychisq>1,] # sen and res ~OR
|
||||
|
||||
# sanity check
|
||||
if (nrow(bar_or) == nrow(sen1) + nrow(res1) ){
|
||||
cat("\nPASS: df with or successfully sourced"
|
||||
, "\nCalculating % of muts with OR>1")
|
||||
}else{
|
||||
stop("Abort: df with or numbers mimatch")
|
||||
}
|
||||
|
||||
# percent for OR muts
|
||||
pc_orR = nrow(res1)/(nrow(sen1) + nrow(res1)); pc_orR
|
||||
|
||||
cat("\nNo.of DST muts:", nrow(bar_or)
|
||||
, "\nNo of DST (R):", table(bar_or$sensitivity)[[1]]
|
||||
, "\nNo of DST (S):", table(bar_or$sensitivity)[[2]]
|
||||
, "\nNumber of R muts with OR >1 (n = ", nrow(res1),")"
|
||||
, "\nPercentage of muts with OR>1 i.e resistant:" , pc_orR *100 )
|
||||
|
||||
table(bar_or$sensitivity)
|
||||
|
||||
# muts with highest OR
|
||||
head(bar_or$mutationinformation, 10)
|
||||
|
||||
# sort df
|
||||
bar_or = bar_or[order(bar_or$or_mychisq
|
||||
, bar_or$ligand_distance
|
||||
, bar_or$nca_distance
|
||||
, bar_or$interface_dist
|
||||
, decreasing = T), ]
|
||||
|
||||
nrow(bar_or)
|
||||
bar_or$drug_site = ifelse(bar_or$position%in%aa_pos_drug, "drug", "no")
|
||||
table(bar_or$drug_site)
|
||||
|
||||
top10_or = bar_or[1:10,]
|
||||
top10_or
|
||||
|
||||
write.csv(bar_or, paste0(outdir_stats, "rpob_OR_10.csv"))
|
||||
|
||||
# are these active sites
|
||||
top10_or$position[top10_or$position%in%active_aa_pos]
|
||||
|
||||
|
||||
# most frequent
|
||||
bar_maf = bar_or[order(bar_or$maf_percent
|
||||
, bar_or$ligand_distance
|
||||
, bar_or$nca_distance
|
||||
, bar_or$interface_dist
|
||||
, decreasing = T), ]
|
||||
bar_maf$drug_site = ifelse(bar_maf$position%in%aa_pos_drug, "drug", "no")
|
||||
table(bar_maf$drug_site)
|
||||
bar_maf[1:10,]
|
||||
#########################################################
|
||||
# closest most sig
|
||||
bar_or_lig = bar_or[bar_or$ligand_distance<10,]
|
||||
bar_or_lig = bar_or_lig[order(bar_or_lig$ligand_distance, -bar_or_lig$or_mychisq), ]
|
||||
table(bar_or_lig$signif_fdr)
|
||||
|
||||
|
||||
bar_or_nca = bar_or[bar_or$nca_distance<10,]
|
||||
bar_or_nca = bar_or_nca[order(bar_or_nca$nca_distance, -bar_or_ppi$or_mychisq), ]
|
||||
table(bar_or_nca$signif_fdr)
|
||||
|
||||
bar_or_ppi = bar_or[bar_or$interface_dist<10,]
|
||||
bar_or_ppi = bar_or_ppi[order(bar_or_ppi$interface_dist, -bar_or_ppi$or_mychisq), ]
|
||||
table(bar_or_ppi$signif_fdr)
|
Loading…
Add table
Add a link
Reference in a new issue