added mcsm_mean_affinity_ensemble.R and replaceBfactor_pdb_stability.R
This commit is contained in:
parent
1bf66b145c
commit
f3710bfaf5
2 changed files with 571 additions and 0 deletions
290
scripts/plotting/mcsm_mean_affinity_ensemble.R
Normal file
290
scripts/plotting/mcsm_mean_affinity_ensemble.R
Normal file
|
@ -0,0 +1,290 @@
|
||||||
|
#source("~/git/LSHTM_analysis/config/pnca.R")
|
||||||
|
source("~/git/LSHTM_analysis/config/alr.R")
|
||||||
|
source("~/git/LSHTM_analysis/config/gid.R")
|
||||||
|
source("/home/tanu/git/LSHTM_analysis/my_header.R")
|
||||||
|
#########################################################
|
||||||
|
# TASK: Generate averaged stability values
|
||||||
|
# across all stability tools
|
||||||
|
# for a given structure
|
||||||
|
#########################################################
|
||||||
|
|
||||||
|
#=======
|
||||||
|
# output
|
||||||
|
#=======
|
||||||
|
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
|
||||||
|
outfile_mean_ens_st_aff = paste0(outdir_images, "/", tolower(gene)
|
||||||
|
, "_mean_ens_stab_aff.csv")
|
||||||
|
print(paste0("Output file:", outfile_mean_ens_st_aff))
|
||||||
|
|
||||||
|
#%%===============================================================
|
||||||
|
|
||||||
|
#=============
|
||||||
|
# Input
|
||||||
|
#=============
|
||||||
|
df3_filename = paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv")
|
||||||
|
df3 = read.csv(df3_filename)
|
||||||
|
length(df3$mutationinformation)
|
||||||
|
|
||||||
|
# mut_info checks
|
||||||
|
table(df3$mutation_info)
|
||||||
|
table(df3$mutation_info_orig)
|
||||||
|
table(df3$mutation_info_labels_orig)
|
||||||
|
|
||||||
|
# used in plots and analyses
|
||||||
|
table(df3$mutation_info_labels) # different, and matches dst_mode
|
||||||
|
table(df3$dst_mode)
|
||||||
|
|
||||||
|
# create column based on dst mode with different colname
|
||||||
|
table(is.na(df3$dst))
|
||||||
|
table(is.na(df3$dst_mode))
|
||||||
|
|
||||||
|
#===============
|
||||||
|
# Create column: sensitivity mapped to dst_mode
|
||||||
|
#===============
|
||||||
|
df3$sensitivity = ifelse(df3$dst_mode == 1, "R", "S")
|
||||||
|
table(df3$sensitivity)
|
||||||
|
|
||||||
|
length(unique((df3$mutationinformation)))
|
||||||
|
all_colnames = as.data.frame(colnames(df3))
|
||||||
|
common_cols = c("mutationinformation"
|
||||||
|
, "position"
|
||||||
|
, "dst_mode"
|
||||||
|
#, "mutation_info_labels"
|
||||||
|
, "sensitivity"
|
||||||
|
, "ligand_distance")
|
||||||
|
|
||||||
|
# ADD the ones for mcsm_na etc
|
||||||
|
#optional_cols = c()
|
||||||
|
|
||||||
|
all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)]
|
||||||
|
#TODO: affinity_cols
|
||||||
|
scaled_cols = c("duet_scaled" , "duet_stability_change"
|
||||||
|
,"deepddg_scaled" , "deepddg"
|
||||||
|
,"ddg_dynamut2_scaled" , "ddg_dynamut2"
|
||||||
|
,"foldx_scaled" , "ddg_foldx"
|
||||||
|
, "mcsm_ppi2_scaled" , "mcsm_ppi2_affinity"
|
||||||
|
, "mcsm_na_scaled" , "mcsm_na_affinity"
|
||||||
|
#,"consurf_scaled" , "consurf_score"
|
||||||
|
#,"snap2_scaled" , "snap2_score"
|
||||||
|
#,"provean_scaled" , "provean_score"
|
||||||
|
#,"affinity_scaled" , "ligand_affinity_change"
|
||||||
|
#,"mmcsm_lig_scaled" , "mmcsm_lig"
|
||||||
|
)
|
||||||
|
all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)]
|
||||||
|
outcome_cols = c("duet_outcome"
|
||||||
|
, "deepddg_outcome"
|
||||||
|
, "ddg_dynamut2_outcome"
|
||||||
|
, "foldx_outcome"
|
||||||
|
#, "ddg_foldx", "foldx_scaled"
|
||||||
|
|
||||||
|
# consurf outcome doesn't exist
|
||||||
|
#,"provean_outcome"
|
||||||
|
#,"snap2_outcome"
|
||||||
|
#,"ligand_outcome"
|
||||||
|
#,"mmcsm_lig_outcome"
|
||||||
|
#, "mcsm_ppi2_outcome"
|
||||||
|
#, "mcsm_na_outcome"
|
||||||
|
)
|
||||||
|
|
||||||
|
##############################################################
|
||||||
|
#####################
|
||||||
|
# Ensemble stability
|
||||||
|
#####################
|
||||||
|
# extract outcome cols and map numeric values to the categories
|
||||||
|
# Destabilising == 1, and stabilising == 0
|
||||||
|
df3_plot = df3[, cols_to_extract]
|
||||||
|
|
||||||
|
df3_plot[, outcome_cols] <- sapply(df3_plot[, outcome_cols]
|
||||||
|
, function(x){ifelse(x == "Destabilising", 0, 1)})
|
||||||
|
|
||||||
|
#=====================================
|
||||||
|
# Stability (4 cols): average the scores
|
||||||
|
# across predictors ==> average by
|
||||||
|
# position ==> scale b/w -1 and 1
|
||||||
|
|
||||||
|
# column to average: ens_stability
|
||||||
|
#=====================================
|
||||||
|
cols_to_average = which(colnames(df3_plot)%in%outcome_cols)
|
||||||
|
|
||||||
|
# ensemble average across predictors
|
||||||
|
df3_plot$ens_stability = rowMeans(df3_plot[,cols_to_average])
|
||||||
|
|
||||||
|
head(df3_plot$position); head(df3_plot$mutationinformation)
|
||||||
|
head(df3_plot$ens_stability)
|
||||||
|
table(df3_plot$ens_stability)
|
||||||
|
|
||||||
|
# ensemble average of predictors by position
|
||||||
|
mean_ens_stability_by_position <- df3_plot %>%
|
||||||
|
dplyr::group_by(position) %>%
|
||||||
|
dplyr::summarize(avg_ens_stability = mean(ens_stability))
|
||||||
|
|
||||||
|
# REscale b/w -1 and 1
|
||||||
|
#en_stab_min = min(mean_ens_stability_by_position['avg_ens_stability'])
|
||||||
|
#en_stab_max = max(mean_ens_stability_by_position['avg_ens_stability'])
|
||||||
|
|
||||||
|
# scale the average stability value between -1 and 1
|
||||||
|
# mean_ens_by_position['averaged_stability3_scaled'] = lapply(mean_ens_by_position['averaged_stability3']
|
||||||
|
# , function(x) ifelse(x < 0, x/abs(en3_min), x/en3_max))
|
||||||
|
|
||||||
|
mean_ens_stability_by_position['avg_ens_stability_scaled'] = lapply(mean_ens_stability_by_position['avg_ens_stability']
|
||||||
|
, function(x) {
|
||||||
|
scales::rescale(x, to = c(-1,1)
|
||||||
|
#, from = c(en_stab_min,en_stab_max))
|
||||||
|
, from = c(0,1))
|
||||||
|
})
|
||||||
|
cat(paste0('Average stability scores:\n'
|
||||||
|
, head(mean_ens_stability_by_position['avg_ens_stability'])
|
||||||
|
, '\n---------------------------------------------------------------'
|
||||||
|
, '\nAverage stability scaled scores:\n'
|
||||||
|
, head(mean_ens_stability_by_position['avg_ens_stability_scaled'])))
|
||||||
|
|
||||||
|
# convert to a data frame
|
||||||
|
mean_ens_stability_by_position = as.data.frame(mean_ens_stability_by_position)
|
||||||
|
|
||||||
|
#FIXME: sanity checks
|
||||||
|
# TODO: predetermine the bounds
|
||||||
|
# l_bound_ens = min(mean_ens_stability_by_position['avg_ens_stability_scaled'])
|
||||||
|
# u_bound_ens = max(mean_ens_stability_by_position['avg_ens_stability_scaled'])
|
||||||
|
#
|
||||||
|
# if ( (l_bound_ens == -1) && (u_bound_ens == 1) ){
|
||||||
|
# cat(paste0("PASS: ensemble stability scores averaged by position and then scaled"
|
||||||
|
# , "\nmin ensemble averaged stability: ", l_bound_ens
|
||||||
|
# , "\nmax ensemble averaged stability: ", u_bound_ens))
|
||||||
|
# }else{
|
||||||
|
# cat(paste0("FAIL: avergaed duet scores could not be scaled b/w -1 and 1"
|
||||||
|
# , "\nmin ensemble averaged stability: ", l_bound_ens
|
||||||
|
# , "\nmax ensemble averaged stability: ", u_bound_ens))
|
||||||
|
# quit()
|
||||||
|
# }
|
||||||
|
##################################################################
|
||||||
|
#%%
|
||||||
|
affinity_outcome_colnames = c("ligand_outcome", "mmcsm_lig_outcome"
|
||||||
|
, "mcsm_ppi2_outcome"
|
||||||
|
, "mcsm_na_outcome")
|
||||||
|
|
||||||
|
outcome_cols_affinity = colnames(df3)[colnames(df3)%in%affinity_outcome_colnames]
|
||||||
|
outcome_cols_affinity = c("ligand_outcome"
|
||||||
|
,"mmcsm_lig_outcome")
|
||||||
|
|
||||||
|
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols, scaled_cols, outcome_cols, outcome_cols_affinity)]
|
||||||
|
cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols, outcome_cols)]
|
||||||
|
|
||||||
|
foo = df3[, cols_to_consider]
|
||||||
|
df3_plot_orig = df3[, cols_to_extract]
|
||||||
|
|
||||||
|
############################
|
||||||
|
# Ensemble affinity: ligand
|
||||||
|
############################
|
||||||
|
# extract ligand affinity outcome cols and map numeric values to the categories
|
||||||
|
# Destabilising == 1, and stabilising == 0
|
||||||
|
cols_to_extract_affinity = cols_to_consider[cols_to_consider%in%c(common_cols
|
||||||
|
, outcome_cols_affinity)]
|
||||||
|
|
||||||
|
|
||||||
|
df3_plot_affinity = df3[, cols_to_extract_affinity]
|
||||||
|
names(df3_plot_affinity)
|
||||||
|
|
||||||
|
df3_plot_affinity[, outcome_cols_affinity] <- sapply(df3_plot_affinity[, outcome_cols_affinity]
|
||||||
|
, function(x){ifelse(x == "Destabilising", 1, 0)})
|
||||||
|
|
||||||
|
#=====================================
|
||||||
|
# Affintiy (2 cols): average the scores
|
||||||
|
# across predictors ==> average by
|
||||||
|
# position ==> scale b/w -1 and 1
|
||||||
|
|
||||||
|
# column to average: ens_affinity
|
||||||
|
#=====================================
|
||||||
|
cols_to_average_affinity = which(colnames(df3_plot_affinity)%in%outcome_cols_affinity)
|
||||||
|
cols_to_average_affinity
|
||||||
|
|
||||||
|
# ensemble average across predictors
|
||||||
|
df3_plot_affinity$ens_affinity = rowMeans(df3_plot_affinity[,cols_to_average_affinity])
|
||||||
|
|
||||||
|
head(df3_plot_affinity$position); head(df3_plot_affinity$mutationinformation)
|
||||||
|
head(df3_plot_affinity$ens_affinity)
|
||||||
|
table(df3_plot_affinity$ens_affinity)
|
||||||
|
|
||||||
|
# ensemble average of predictors by position
|
||||||
|
mean_ens_affinity_by_position <- df3_plot_affinity %>%
|
||||||
|
dplyr::group_by(position) %>%
|
||||||
|
dplyr::summarize(avg_ens_affinity = mean(ens_affinity))
|
||||||
|
|
||||||
|
# REscale b/w -1 and 1
|
||||||
|
#en_aff_min = min(mean_ens_affinity_by_position['ens_affinity'])
|
||||||
|
#en_aff_max = max(mean_ens_affinity_by_position['ens_affinity'])
|
||||||
|
|
||||||
|
# scale the average affintiy value between -1 and 1
|
||||||
|
# mean_ens_affinity_by_position['avg_ens_affinity_scaled'] = lapply(mean_ens_affinity_by_position['avg_ens_affinity']
|
||||||
|
# , function(x) ifelse(x < 0, x/abs(en_aff_min), x/en_aff_max))
|
||||||
|
|
||||||
|
|
||||||
|
mean_ens_affinity_by_position['avg_ens_affinity_scaled'] = lapply(mean_ens_affinity_by_position['avg_ens_affinity']
|
||||||
|
, function(x) {
|
||||||
|
scales::rescale(x, to = c(-1,1)
|
||||||
|
#, from = c(en_aff_min,en_aff_max))
|
||||||
|
, from = c(0,1))
|
||||||
|
})
|
||||||
|
cat(paste0('Average affintiy scores:\n'
|
||||||
|
, head(mean_ens_affinity_by_position['avg_ens_affinity'])
|
||||||
|
, '\n---------------------------------------------------------------'
|
||||||
|
, '\nAverage affintiy scaled scores:\n'
|
||||||
|
, head(mean_ens_affinity_by_position['avg_ens_affinity_scaled'])))
|
||||||
|
|
||||||
|
#convert to a df
|
||||||
|
mean_ens_affinity_by_position = as.data.frame(mean_ens_affinity_by_position)
|
||||||
|
|
||||||
|
|
||||||
|
#FIXME: sanity checks
|
||||||
|
# TODO: predetermine the bounds
|
||||||
|
# l_bound_ens_aff = min(mean_ens_affintiy_by_position['avg_ens_affinity_scaled'])
|
||||||
|
# u_bound_ens_aff = max(mean_ens_affintiy_by_position['avg_ens_affinity_scaled'])
|
||||||
|
#
|
||||||
|
# if ( (l_bound_ens_aff == -1) && (u_bound_ens_aff == 1) ){
|
||||||
|
# cat(paste0("PASS: ensemble affinity scores averaged by position and then scaled"
|
||||||
|
# , "\nmin ensemble averaged affinity: ", l_bound_ens_aff
|
||||||
|
# , "\nmax ensemble averaged affinity: ", u_bound_ens_aff))
|
||||||
|
# }else{
|
||||||
|
# cat(paste0("FAIL: ensemble affinity scores could not be scaled b/w -1 and 1"
|
||||||
|
# , "\nmin ensemble averaged affinity: ", l_bound_ens_aff
|
||||||
|
# , "\nmax ensemble averaged affinity: ", u_bound_ens_aff))
|
||||||
|
# quit()
|
||||||
|
# }
|
||||||
|
|
||||||
|
|
||||||
|
######################################################################
|
||||||
|
##################
|
||||||
|
# merge: mean ensemble stability and affinity by_position
|
||||||
|
####################
|
||||||
|
# if ( class(mean_ens_stability_by_position) && class(mean_ens_affinity_by_position) != "data.frame"){
|
||||||
|
# cat("Y")
|
||||||
|
# }
|
||||||
|
|
||||||
|
common_cols = intersect(colnames(mean_ens_stability_by_position), colnames(mean_ens_affinity_by_position))
|
||||||
|
|
||||||
|
if (dim(mean_ens_stability_by_position) && dim(mean_ens_affinity_by_position)){
|
||||||
|
print(paste0("PASS: dim's match, mering dfs by column :", common_cols))
|
||||||
|
#combined = as.data.frame(cbind(mean_duet_by_position, mean_affinity_by_position ))
|
||||||
|
combined_df = as.data.frame(merge(mean_ens_stability_by_position
|
||||||
|
, mean_ens_affinity_by_position
|
||||||
|
, by = common_cols
|
||||||
|
, all = T))
|
||||||
|
|
||||||
|
cat(paste0("\nnrows combined_df:", nrow(combined_df)
|
||||||
|
, "\nnrows combined_df:", ncol(combined_df)))
|
||||||
|
}else{
|
||||||
|
cat(paste0("FAIL: dim's mismatch, aborting cbind!"
|
||||||
|
, "\nnrows df1:", nrow(mean_duet_by_position)
|
||||||
|
, "\nnrows df2:", nrow(mean_affinity_by_position)))
|
||||||
|
quit()
|
||||||
|
}
|
||||||
|
#%%============================================================
|
||||||
|
# output
|
||||||
|
write.csv(combined_df, outfile_mean_ens_st_aff
|
||||||
|
, row.names = F)
|
||||||
|
cat("Finished writing file:\n"
|
||||||
|
, outfile_mean_ens_st_aff
|
||||||
|
, "\nNo. of rows:", nrow(combined_df)
|
||||||
|
, "\nNo. of cols:", ncol(combined_df))
|
||||||
|
|
||||||
|
# end of script
|
||||||
|
#===============================================================
|
281
scripts/plotting/replaceBfactor_pdb_stability.R
Normal file
281
scripts/plotting/replaceBfactor_pdb_stability.R
Normal file
|
@ -0,0 +1,281 @@
|
||||||
|
#!/usr/bin/env Rscript
|
||||||
|
|
||||||
|
#########################################################
|
||||||
|
# TASK: Replace B-factors in the pdb file with the mean
|
||||||
|
# normalised stability values.
|
||||||
|
|
||||||
|
# read pdb file
|
||||||
|
|
||||||
|
# read mcsm mean stability value files
|
||||||
|
# extract the respective mean values and assign to the
|
||||||
|
# b-factor column within their respective pdbs
|
||||||
|
|
||||||
|
# generate some distribution plots for inspection
|
||||||
|
|
||||||
|
#########################################################
|
||||||
|
# working dir and loading libraries
|
||||||
|
getwd()
|
||||||
|
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
||||||
|
cat(c(getwd(),"\n"))
|
||||||
|
|
||||||
|
#source("~/git/LSHTM_analysis/scripts/Header_TT.R")
|
||||||
|
library(bio3d)
|
||||||
|
require("getopt", quietly = TRUE) # cmd parse arguments
|
||||||
|
#========================================================
|
||||||
|
#drug = "pyrazinamide"
|
||||||
|
#gene = "pncA"
|
||||||
|
|
||||||
|
# command line args
|
||||||
|
spec = matrix(c(
|
||||||
|
"drug" , "d", 1, "character",
|
||||||
|
"gene" , "g", 1, "character"
|
||||||
|
), byrow = TRUE, ncol = 4)
|
||||||
|
|
||||||
|
opt = getopt(spec)
|
||||||
|
|
||||||
|
drug = opt$drug
|
||||||
|
gene = opt$gene
|
||||||
|
|
||||||
|
if(is.null(drug)|is.null(gene)) {
|
||||||
|
stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
|
||||||
|
}
|
||||||
|
#========================================================
|
||||||
|
gene_match = paste0(gene,"_p.")
|
||||||
|
cat(gene_match)
|
||||||
|
|
||||||
|
#=============
|
||||||
|
# directories
|
||||||
|
#=============
|
||||||
|
datadir = paste0("~/git/Data")
|
||||||
|
indir = paste0(datadir, "/", drug, "/input")
|
||||||
|
outdir = paste0("~/git/Data", "/", drug, "/output")
|
||||||
|
#outdir_plots = paste0("~/git/Data", "/", drug, "/output/plots")
|
||||||
|
outdir_plots = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
|
||||||
|
|
||||||
|
#======
|
||||||
|
# input
|
||||||
|
#======
|
||||||
|
in_filename_pdb = paste0(tolower(gene), "_complex.pdb")
|
||||||
|
infile_pdb = paste0(indir, "/", in_filename_pdb)
|
||||||
|
cat(paste0("Input file:", infile_pdb) )
|
||||||
|
|
||||||
|
#in_filename_mean_stability = paste0(tolower(gene), "_mean_stability.csv")
|
||||||
|
#infile_mean_stability = paste0(outdir, "/", in_filename_mean_stability)
|
||||||
|
|
||||||
|
in_filename_mean_stability = paste0(tolower(gene), "_mean_ens_stability.csv")
|
||||||
|
infile_mean_stability = paste0(outdir_plots, "/", in_filename_mean_stability)
|
||||||
|
|
||||||
|
cat(paste0("Input file:", infile_mean_stability) )
|
||||||
|
|
||||||
|
#=======
|
||||||
|
# output
|
||||||
|
#=======
|
||||||
|
#out_filename_duet_mspdb = paste0(tolower(gene), "_complex_bduet_ms.pdb")
|
||||||
|
out_filename_duet_mspdb = paste0(tolower(gene), "_complex_b_stab_ms.pdb")
|
||||||
|
outfile_duet_mspdb = paste0(outdir_plots, "/", out_filename_duet_mspdb)
|
||||||
|
print(paste0("Output file:", outfile_duet_mspdb))
|
||||||
|
|
||||||
|
#%%===============================================================
|
||||||
|
#NOTE: duet here refers to the ensemble stability values
|
||||||
|
|
||||||
|
###########################
|
||||||
|
# Read file: average stability values
|
||||||
|
# or mcsm_normalised file
|
||||||
|
###########################
|
||||||
|
my_df <- read.csv(infile_mean_stability, header = T)
|
||||||
|
str(my_df)
|
||||||
|
|
||||||
|
#############
|
||||||
|
# Read pdb
|
||||||
|
#############
|
||||||
|
# list of 8
|
||||||
|
my_pdb = read.pdb(infile_pdb
|
||||||
|
, maxlines = -1
|
||||||
|
, multi = FALSE
|
||||||
|
, rm.insert = FALSE
|
||||||
|
, rm.alt = TRUE
|
||||||
|
, ATOM.only = FALSE
|
||||||
|
, hex = FALSE
|
||||||
|
, verbose = TRUE)
|
||||||
|
|
||||||
|
rm(in_filename_mean_stability, in_filename_pdb)
|
||||||
|
|
||||||
|
# assign separately for duet and ligand
|
||||||
|
my_pdb_duet = my_pdb
|
||||||
|
|
||||||
|
#=========================================================
|
||||||
|
# Replacing B factor with mean stability scores
|
||||||
|
# within the respective dfs
|
||||||
|
#==========================================================
|
||||||
|
# extract atom list into a variable
|
||||||
|
# since in the list this corresponds to data frame, variable will be a df
|
||||||
|
#df_duet = my_pdb_duet[[1]]
|
||||||
|
df_duet= my_pdb_duet[['atom']]
|
||||||
|
|
||||||
|
# make a copy: required for downstream sanity checks
|
||||||
|
d2_duet = df_duet
|
||||||
|
|
||||||
|
# sanity checks: B factor
|
||||||
|
max(df_duet$b); min(df_duet$b)
|
||||||
|
|
||||||
|
#==================================================
|
||||||
|
# histograms and density plots for inspection
|
||||||
|
# 1: original B-factors
|
||||||
|
# 2: original mean stability values
|
||||||
|
# 3: replaced B-factors with mean stability values
|
||||||
|
#==================================================
|
||||||
|
# Set the margin on all sides
|
||||||
|
par(oma = c(3,2,3,0)
|
||||||
|
, mar = c(1,3,5,2)
|
||||||
|
#, mfrow = c(3,2)
|
||||||
|
#, mfrow = c(3,4))
|
||||||
|
, mfrow = c(3,2))
|
||||||
|
|
||||||
|
|
||||||
|
#=============
|
||||||
|
# Row 1 plots: original B-factors
|
||||||
|
# duet and affinity
|
||||||
|
#=============
|
||||||
|
hist(df_duet$b
|
||||||
|
, xlab = ""
|
||||||
|
, main = "Bfactor stability")
|
||||||
|
|
||||||
|
plot(density(df_duet$b)
|
||||||
|
, xlab = ""
|
||||||
|
, main = "Bfactor stability")
|
||||||
|
|
||||||
|
#=============
|
||||||
|
# Row 2 plots: original mean stability values
|
||||||
|
# duet and affinity
|
||||||
|
#=============
|
||||||
|
|
||||||
|
#hist(my_df$averaged_duet
|
||||||
|
hist(my_df$avg_ens_stability_scaled
|
||||||
|
, xlab = ""
|
||||||
|
, main = "mean stability values")
|
||||||
|
|
||||||
|
#plot(density(my_df$averaged_duet)
|
||||||
|
plot(density(my_df$avg_ens_stability_scaled)
|
||||||
|
, xlab = ""
|
||||||
|
, main = "mean stability values")
|
||||||
|
|
||||||
|
#==============
|
||||||
|
# Row 3 plots: replaced B-factors with mean stability values
|
||||||
|
# After actual replacement in the b factor column
|
||||||
|
#===============
|
||||||
|
################################################################
|
||||||
|
#=========
|
||||||
|
# step 0_P1: DONT RUN once you have double checked the matched output
|
||||||
|
#=========
|
||||||
|
# sanity check: match and assign to a separate column to double check
|
||||||
|
# colnames(my_df)
|
||||||
|
# df_duet$duet_scaled = my_df$averge_duet_scaled[match(df_duet$resno, my_df$position)]
|
||||||
|
|
||||||
|
#=========
|
||||||
|
# step 1_P1
|
||||||
|
#=========
|
||||||
|
# Be brave and replace in place now (don"t run sanity check)
|
||||||
|
# this makes all the B-factor values in the non-matched positions as NA
|
||||||
|
|
||||||
|
#df_duet$b = my_df$averaged_duet_scaled[match(df_duet$resno, my_df$position)]
|
||||||
|
df_duet$b = my_df$avg_ens_stability_scaled[match(df_duet$resno, my_df$position)]
|
||||||
|
|
||||||
|
#=========
|
||||||
|
# step 2_P1
|
||||||
|
#=========
|
||||||
|
# count NA in Bfactor
|
||||||
|
b_na_duet = sum(is.na(df_duet$b)) ; b_na_duet
|
||||||
|
|
||||||
|
# count number of 0"s in Bactor
|
||||||
|
sum(df_duet$b == 0)
|
||||||
|
|
||||||
|
# replace all NA in b factor with 0
|
||||||
|
na_rep = 2
|
||||||
|
df_duet$b[is.na(df_duet$b)] = na_rep
|
||||||
|
|
||||||
|
# # sanity check: should be 0 and True
|
||||||
|
# # duet and lig
|
||||||
|
# if ( (sum(df_duet$b == na_rep) == b_na_duet) && (sum(df_lig$b == na_rep) == b_na_lig) ) {
|
||||||
|
# print ("PASS: NA's replaced with 0s successfully in df_duet and df_lig")
|
||||||
|
# } else {
|
||||||
|
# print("FAIL: NA replacement in df_duet NOT successful")
|
||||||
|
# quit()
|
||||||
|
# }
|
||||||
|
#
|
||||||
|
# max(df_duet$b); min(df_duet$b)
|
||||||
|
#
|
||||||
|
# # sanity checks: should be True
|
||||||
|
# if( (max(df_duet$b) == max(my_df$avg_ens_stability_scaled)) & (min(df_duet$b) == min(my_df$avg_ens_stability_scaled)) ){
|
||||||
|
# print("PASS: B-factors replaced correctly in df_duet")
|
||||||
|
# } else {
|
||||||
|
# print ("FAIL: To replace B-factors in df_duet")
|
||||||
|
# quit()
|
||||||
|
# }
|
||||||
|
|
||||||
|
# if( (max(df_lig$b) == max(my_df$avg_ens_affinity_scaled)) & (min(df_lig$b) == min(my_df$avg_ens_affinity_scaled)) ){
|
||||||
|
# print("PASS: B-factors replaced correctly in df_lig")
|
||||||
|
# } else {
|
||||||
|
# print ("FAIL: To replace B-factors in df_lig")
|
||||||
|
# quit()
|
||||||
|
# }
|
||||||
|
|
||||||
|
#=========
|
||||||
|
# step 3_P1
|
||||||
|
#=========
|
||||||
|
# sanity check: dim should be same before reassignment
|
||||||
|
if ( (dim(df_duet)[1] == dim(d2_duet)[1]) &
|
||||||
|
(dim(df_duet)[2] == dim(d2_duet)[2])
|
||||||
|
){
|
||||||
|
print("PASS: Dims of both dfs as expected")
|
||||||
|
} else {
|
||||||
|
print ("FAIL: Dims mismatch")
|
||||||
|
quit()}
|
||||||
|
|
||||||
|
#=========
|
||||||
|
# step 4_P1:
|
||||||
|
# VERY important
|
||||||
|
#=========
|
||||||
|
# assign it back to the pdb file
|
||||||
|
my_pdb_duet[['atom']] = df_duet
|
||||||
|
max(df_duet$b); min(df_duet$b)
|
||||||
|
table(df_duet$b)
|
||||||
|
sum(is.na(df_duet$b))
|
||||||
|
|
||||||
|
#=========
|
||||||
|
# step 5_P1
|
||||||
|
#=========
|
||||||
|
cat(paste0("output file duet mean stability pdb:", outfile_duet_mspdb))
|
||||||
|
write.pdb(my_pdb_duet, outfile_duet_mspdb)
|
||||||
|
|
||||||
|
#============================
|
||||||
|
# Add the 3rd histogram and density plots for comparisons
|
||||||
|
#============================
|
||||||
|
# Plots continued...
|
||||||
|
# Row 3 plots: hist and density of replaced B-factors with stability values
|
||||||
|
hist(df_duet$b
|
||||||
|
, xlab = ""
|
||||||
|
, main = "repalcedB duet")
|
||||||
|
|
||||||
|
plot(density(df_duet$b)
|
||||||
|
, xlab = ""
|
||||||
|
, main = "replacedB duet")
|
||||||
|
|
||||||
|
# graph titles
|
||||||
|
mtext(text = "Frequency"
|
||||||
|
, side = 2
|
||||||
|
, line = 0
|
||||||
|
, outer = TRUE)
|
||||||
|
|
||||||
|
mtext(text = paste0(tolower(gene), ": stability distribution")
|
||||||
|
, side = 3
|
||||||
|
, line = 0
|
||||||
|
, outer = TRUE)
|
||||||
|
#============================================
|
||||||
|
|
||||||
|
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||||
|
# NOTE: This replaced B-factor distribution has the same
|
||||||
|
# x-axis as the PredAff normalised values, but the distribution
|
||||||
|
# is affected since 0 is overinflated/or hs an additional blip because
|
||||||
|
# of the positions not associated with resistance. This is because all the positions
|
||||||
|
# where there are no SNPs have been assigned 0???
|
||||||
|
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
Loading…
Add table
Add a link
Reference in a new issue