added script to calculate electrostatic changes of mutations

This commit is contained in:
Tanushree Tunstall 2020-02-11 15:03:21 +00:00
parent 56e7a96b00
commit f22f674097

View file

@ -0,0 +1,162 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 6 12:56:03 2019
@author: tanu
"""
# FIXME: include error checking to enure you only
# concentrate on positions that have structural info
#%% load libraries
###################
# load libraries
import os, sys
import pandas as pd
#import numpy as np
#from pandas.api.types import is_string_dtype
#from pandas.api.types import is_numeric_dtype
#====================================================
# TASK: calculate how many mutations result in
# electrostatic changes wrt wt
# Input: mcsm and AF_OR file
# output: mut_elec_changes_results.txt
#========================================================
#%%
####################
# my working dir
os.getcwd()
homedir = os.path.expanduser('~') # spyder/python doesn't recognise tilde
os.chdir(homedir + '/git/LSHTM_analysis/meta_data_analysis')
os.getcwd()
#%%
from reference_dict import my_aa_dict #CHECK DIR STRUC THERE!
#%%
############# specify variables for input and output paths and filenames
drug = "pyrazinamide"
gene = "pnca"
datadir = homedir + "/git/Data"
basedir = datadir + "/" + drug + "/input"
# input
inpath = "/processed"
# uncomment as necessary
in_filename = "/meta_data_with_AFandOR.csv"
#in_filename = "/mcsm_complex1_normalised.csv" # probably simpler
infile = basedir + inpath + in_filename
#print(infile)
# output file
outpath = "/output"
outdir = datadir + "/" + drug + outpath
out_filename = "/mut_elec_changes_results.txt"
outfile = outdir + out_filename
#print(outdir)
if not os.path.exists(datadir):
print('Error!', datadir, 'does not exist. Please ensure it exists. Dir struc specified in README.md')
os.makedirs(datadir)
exit()
if not os.path.exists(outdir):
print('Error!', outdir, 'does not exist.Please ensure it exists. Dir struc specified in README.md')
exit()
else:
print('Dir exists: Carrying on')
################## end of variable assignment for input and output files
#%%
#==============================================================================
############
# STEP 1: Read file
############
meta_pnca = pd.read_csv(infile, sep = ',')
# column names
list(meta_pnca.columns)
#========
# Step 2: iterate through the dict, create a lookup dict that i.e
# lookup_dict = {three_letter_code: aa_prop_polarity}
# Do this for both wild_type and mutant as above.
#=========
# initialise a sub dict that is lookup dict for three letter code to aa prop
lookup_dict = dict()
for k, v in my_aa_dict.items():
lookup_dict[k] = v['aa_calcprop']
#print(lookup_dict)
wt = meta_pnca['mutation'].str.extract('pnca_p.(\w{3})').squeeze() # converts to a series that map works on
meta_pnca['wt_calcprop'] = wt.map(lookup_dict)
mut = meta_pnca['mutation'].str.extract(r'\d+(\w{3})$').squeeze()
meta_pnca['mut_calcprop'] = mut.map(lookup_dict)
# added two more cols
# clear variables
del(k, v, wt, mut, lookup_dict)
del(in_filename, infile, inpath)
#%%
###########
# Step 3: subset unique mutations
###########
meta_pnca_muts = meta_pnca.drop_duplicates(['Mutationinformation'], keep = 'first')
non_struc = meta_pnca_muts[meta_pnca_muts.position == 186]
# remove pos non_struc 186 : (in case you used file with AF and OR)
df = meta_pnca_muts[meta_pnca_muts.position != 186]
total_muts = df.Mutationinformation.nunique()
#df.Mutationinformation.count()
###########
# Step 4: combine cols
###########
df['aa_calcprop_combined'] = df['wt_calcprop']+ '->' + df['mut_calcprop']
df['aa_calcprop_combined']
# way1: count values within each combinaton
df.groupby('aa_calcprop_combined').size()
#df.groupby('aa_calcprop_combined').count()
# way2: count values within each combinaton
#df['aa_calcprop_combined'].value_counts()
# comment: the two ways should be identical
# groupby result order is similar to pivot table order
#assign to variable: count values within each combinaton
all_prop = df.groupby('aa_calcprop_combined').size()
# convert to a df from Series
ap_df = pd.DataFrame({'aa_calcprop': all_prop.index, 'mut_count': all_prop.values})
# subset df to contain only the changes in prop
all_prop_change = ap_df[ap_df['aa_calcprop'].isin(['neg->neg','non-polar->non-polar','polar->polar', 'pos->pos']) == False]
elec_count = all_prop_change.mut_count.sum()
# calculate percentage of electrostatic changes
elec_changes = (elec_count/total_muts) * 100
print("Total number of electrostatic changes resulting from Mutation is (%):", elec_changes)
###########
# Step 5: output from console
###########
#sys.stdout = open(file, 'w')
sys.stdout = open(outfile, 'w')
print(df.groupby('aa_calcprop_combined').size() )
print("=======================================================================================")
print("Total number of electrostatic changes resulting from Mutation is (%):", elec_changes)
print("=======================================================================================")