sourcing plotting_data for subcols_axis_PS
This commit is contained in:
parent
b754f26f9b
commit
ed739aeb71
4 changed files with 110 additions and 90 deletions
|
@ -3,52 +3,92 @@ setwd("~/git/LSHTM_analysis/scripts/plotting")
|
|||
getwd()
|
||||
|
||||
#########################################################
|
||||
# TASK:
|
||||
|
||||
# TASK: output barplot by position with each bar coloured by
|
||||
# its stability value and active site positions indicated
|
||||
# according to colour specified in "subcols_axis_PS.R"
|
||||
#########################################################
|
||||
|
||||
#=======================================================================
|
||||
|
||||
############################################################
|
||||
# 1: Installing and loading required packages and functions
|
||||
############################################################
|
||||
|
||||
#source("Header_TT.R")
|
||||
library(ggplot2)
|
||||
library(data.table)
|
||||
source("barplot_colour_function.R")
|
||||
|
||||
############################################################
|
||||
# 2: Read file: struct params data with columns containing
|
||||
# colours for axis labels
|
||||
############################################################
|
||||
#source("subcols_axis.R")
|
||||
source("subcols_axis_PS.R")
|
||||
|
||||
# this should return
|
||||
# should return the following dfs, directories and variables
|
||||
# mut_pos_cols
|
||||
# my_df
|
||||
# my_df_u: df with unique mutations
|
||||
# my_df_u
|
||||
# my_df_u_lig
|
||||
# dup_muts
|
||||
|
||||
cat(paste0("Directories imported:"
|
||||
, "\ndatadir:", datadir
|
||||
, "\nindir:", indir
|
||||
, "\noutdir:", outdir
|
||||
, "\nplotdir:", plotdir))
|
||||
|
||||
cat(paste0("Variables imported:"
|
||||
, "\ndrug:", drug
|
||||
, "\ngene:", gene
|
||||
, "\ngene_match:", gene_match
|
||||
, "\nLength of upos:", length(upos)
|
||||
, "\nAngstrom symbol:", angstroms_symbol))
|
||||
|
||||
# clear excess variable
|
||||
# "mut_pos_cols" is just for inspection in case you need to cross check
|
||||
rm(my_df, upos, dup_muts, my_df_u_lig)
|
||||
#=======================================================================
|
||||
#================
|
||||
# Inspecting mut_pos_cols
|
||||
# position numbers and colours
|
||||
# open file from deskptop ("sample_axis_cols") for cross checking
|
||||
# open file from desktop ("sample_axis_cols") for cross checking
|
||||
#================
|
||||
|
||||
table(mut_pos_cols$lab_bg)
|
||||
sum( table(mut_pos_cols$lab_bg) ) == nrow(mut_pos_cols) # should be True
|
||||
check_lab_bg = sum( table(mut_pos_cols$lab_bg) ) == nrow(mut_pos_cols) # should be True
|
||||
check_lab_bg
|
||||
|
||||
table(mut_pos_cols$lab_bg2)
|
||||
sum( table(mut_pos_cols$lab_bg2) ) == nrow(mut_pos_cols) # should be True
|
||||
check_lab_bg2 = sum( table(mut_pos_cols$lab_bg2) ) == nrow(mut_pos_cols) # should be True
|
||||
check_lab_bg2
|
||||
|
||||
table(mut_pos_cols$lab_fg)
|
||||
sum( table(mut_pos_cols$lab_fg) ) == nrow(mut_pos_cols) # should be True
|
||||
check_lab_fg = sum( table(mut_pos_cols$lab_fg) ) == nrow(mut_pos_cols) # should be True
|
||||
check_lab_fg
|
||||
|
||||
# sanity checks:
|
||||
if (check_lab_bg && check_lab_bg2 && check_lab_fg) {
|
||||
print("PASS: No. of assigned colours match length")
|
||||
}else{
|
||||
print("FAIL: length of assigned colours mismatch")
|
||||
quit()
|
||||
}
|
||||
|
||||
# very important!
|
||||
my_axis_colours = mut_pos_cols$lab_fg
|
||||
|
||||
# now clear mut_pos_cols
|
||||
rm(mut_pos_cols)
|
||||
#=======================================================================
|
||||
#================
|
||||
# Data for plots
|
||||
#================
|
||||
# REASSIGNMENT as necessary
|
||||
df = my_df_u
|
||||
|
||||
# sanity checks
|
||||
str(df)
|
||||
|
||||
###########################
|
||||
# 2: Plot: DUET scores
|
||||
###########################
|
||||
|
||||
#==========================
|
||||
# Plot 2: Barplot with scores (unordered)
|
||||
# corresponds to duet_outcome
|
||||
|
@ -62,20 +102,12 @@ rm(mut_pos_cols)
|
|||
# will require generating the colour scale separately.
|
||||
#============================
|
||||
# sanity checks
|
||||
upos = unique(my_df$position)
|
||||
upos = unique(df$position)
|
||||
|
||||
table(my_df$duet_outcome)
|
||||
table(my_df_u$duet_outcome)
|
||||
table(df$duet_outcome)
|
||||
table(df$duet_outcome)
|
||||
|
||||
#===========================
|
||||
# Data preparation for plots
|
||||
#===========================
|
||||
# REASSIGNMENT as necessary
|
||||
df <- my_df_u
|
||||
rm(my_df, my_df_u)
|
||||
|
||||
# add frequency of positions
|
||||
library(data.table)
|
||||
# add frequency of positions (from lib data.table)
|
||||
setDT(df)[, pos_count := .N, by = .(position)]
|
||||
|
||||
# this is cummulative
|
||||
|
@ -93,8 +125,8 @@ snp_count = sort(unique(snpsBYpos_df$snpsBYpos))
|
|||
|
||||
# sanity checks
|
||||
# should be a factor
|
||||
df$duet_outcome = as.factor(df$duet_outcome)
|
||||
is.factor(df$duet_outcome)
|
||||
#TRUE
|
||||
|
||||
table(df$duet_outcome)
|
||||
|
||||
|
@ -116,13 +148,14 @@ tapply(df$duet_scaled, df$duet_outcome, max)
|
|||
|
||||
# check unique values in normalised data
|
||||
u = unique(df$duet_scaled)
|
||||
cat("No. of unique values in normalised data:", length(u))
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# Run this section if rounding is to be used
|
||||
# specify number for rounding
|
||||
n = 3
|
||||
df$duet_scaledR = round(df$duet_scaled, n)
|
||||
ur = unique(df$duet_scaledR)
|
||||
#n = 3
|
||||
#df$duet_scaledR = round(df$duet_scaled, n)
|
||||
#ur = unique(df$duet_scaledR)
|
||||
|
||||
# create an extra column called group which contains the "gp name and score"
|
||||
# so colours can be generated for each unique values in this column
|
||||
|
@ -158,7 +191,8 @@ my_yats = 18
|
|||
#******************
|
||||
# plot name and location
|
||||
# outdir/ (should be imported from reading file)
|
||||
print(paste0("plot will be in:", outdir))
|
||||
plotdir = paste0(outdir, "/", "plots") #should be imported from reading file
|
||||
print(paste0("plot will be in:", plotdir))
|
||||
|
||||
bp_aa_subcols_duet = "barplot_acoloured_PS.svg"
|
||||
plot_bp_aa_subcols_duet = paste0(outdir, "/plots/", bp_aa_subcols_duet)
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
# basic barplots with count of mutations
|
||||
# basic barplots with frequency of count of mutations
|
||||
#########################################################
|
||||
#=======================================================================
|
||||
# working dir and loading libraries
|
||||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
||||
|
@ -14,18 +15,30 @@ library(ggplot2)
|
|||
library(data.table)
|
||||
library(dplyr)
|
||||
source("plotting_data.R")
|
||||
# should return
|
||||
|
||||
# should return the following dfs, directories and variables
|
||||
# my_df
|
||||
# my_df_u
|
||||
# my_df_u_lig
|
||||
# dup_muts
|
||||
|
||||
#========================================================
|
||||
cat(paste0("Directories imported:"
|
||||
, "\ndatadir:", datadir
|
||||
, "\nindir:", indir
|
||||
, "\noutdir:", outdir
|
||||
, "\nplotdir:", plotdir))
|
||||
|
||||
cat(paste0("Variables imported:"
|
||||
, "\ndrug:", drug
|
||||
, "\ngene:", gene
|
||||
, "\ngene_match:", gene_match
|
||||
, "\nLength of upos:", length(upos))
|
||||
, "\nAngstrom symbol:", angstroms_symbol))
|
||||
|
||||
# clear excess variable
|
||||
rm(my_df, upos, dup_muts, my_df_u_lig)
|
||||
|
||||
#=======================================================================
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
|
@ -37,17 +50,16 @@ plot_basic_bp_duet = paste0(plotdir,"/", basic_bp_duet)
|
|||
pos_count_duet = "position_count_PS.svg"
|
||||
plot_pos_count_duet = paste0(plotdir, "/", pos_count_duet)
|
||||
|
||||
#%%===============================================================
|
||||
#=======================================================================
|
||||
#================
|
||||
# Data for plots
|
||||
#================
|
||||
# REASSIGNMENT as necessary
|
||||
df = my_df_u
|
||||
rm(my_df, upos, dup_muts)
|
||||
|
||||
# sanity checks
|
||||
str(df)
|
||||
#%%=======================================================================
|
||||
#=======================================================================
|
||||
#****************
|
||||
# Plot 1:Count of stabilising and destabilsing muts
|
||||
#****************
|
||||
|
@ -89,7 +101,9 @@ outPlot = g + geom_bar(aes(fill = duet_outcome)
|
|||
|
||||
print(outPlot)
|
||||
dev.off()
|
||||
#%%=======================================================================
|
||||
|
||||
table(df$duet_outcome)
|
||||
#=======================================================================
|
||||
#****************
|
||||
# Plot 2: frequency of positions
|
||||
#****************
|
||||
|
@ -173,6 +187,6 @@ outPlot_pos = g + geom_bar(aes (alpha = 0.5)
|
|||
print(outPlot_pos)
|
||||
dev.off()
|
||||
########################################################################
|
||||
# end of DUET barplots
|
||||
# end of Ligand barplots
|
||||
########################################################################
|
||||
|
||||
|
|
|
@ -11,6 +11,10 @@ setwd("~/git/LSHTM_analysis/scripts/plotting")
|
|||
getwd()
|
||||
|
||||
#source("Header_TT.R")
|
||||
library(ggplot2)
|
||||
library(data.table)
|
||||
library(dplyr)
|
||||
|
||||
require("getopt", quietly = TRUE) #cmd parse arguments
|
||||
#========================================================
|
||||
# command line args
|
||||
|
|
|
@ -1,52 +1,21 @@
|
|||
#########################################################
|
||||
# TASK: Adding colours to positions labels according to
|
||||
# active site residues. This is so these can be seen promptly
|
||||
# when visualising the barplot.
|
||||
#########################################################
|
||||
#=======================================================================
|
||||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
#########################################################
|
||||
# TASK:
|
||||
source("plotting_data.R")
|
||||
# should return the following dfs and directories
|
||||
# my_df
|
||||
# my_df_u
|
||||
# my_df_u_lig
|
||||
# dup_muts
|
||||
|
||||
#########################################################
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages and functions #
|
||||
########################################################################
|
||||
|
||||
#source("Header_TT.R")
|
||||
#source("barplot_colour_function.R")
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for PS #
|
||||
########################################################################
|
||||
#?????????????
|
||||
#
|
||||
########################################################
|
||||
#%% variable assignment: input and output paths & filenames
|
||||
drug = "pyrazinamide"
|
||||
gene = "pncA"
|
||||
gene_match = paste0(gene,"_p.")
|
||||
cat(gene_match)
|
||||
|
||||
#=============
|
||||
# directories
|
||||
#=============
|
||||
datadir = paste0("~/git/Data")
|
||||
indir = paste0(datadir, "/", drug, "/input")
|
||||
outdir = paste0("~/git/Data", "/", drug, "/output")
|
||||
|
||||
#======
|
||||
# input
|
||||
#======
|
||||
#in_filename = "mcsm_complex1_normalised.csv"
|
||||
in_filename_params = paste0(tolower(gene), "_all_params.csv")
|
||||
infile_params = paste0(outdir, "/", in_filename_params)
|
||||
cat(paste0("Input file:", infile_params) )
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
|
||||
|
||||
#%%===============================================================
|
||||
#=======================================================================
|
||||
###########################
|
||||
# Read file: struct params
|
||||
###########################
|
||||
|
@ -83,7 +52,7 @@ if ( length(unique(my_df$mutationinformation)) != length(my_df$mutationinformati
|
|||
upos = unique(my_df_u$position)
|
||||
cat("Dim of clean df:"); cat(dim(my_df_u))
|
||||
cat("\nNo. of unique mutational positions:"); cat(length(upos))
|
||||
#======================================================
|
||||
#=======================================================================
|
||||
# create a new df with unique position numbers and cols
|
||||
position = unique(my_df$position) #130
|
||||
position_cols = as.data.frame(position)
|
||||
|
@ -235,6 +204,5 @@ rm(aa_cols_ref
|
|||
, lab_bg
|
||||
, lab_bg2
|
||||
, lab_fg
|
||||
, position
|
||||
, dup_muts)
|
||||
, position)
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue