updated code and made it tidy
This commit is contained in:
parent
7032baa08d
commit
e8a66a7a94
1 changed files with 208 additions and 42 deletions
|
@ -92,22 +92,22 @@ del(in_filename_afor, in_filename_afor_kin, datadir, indir, outdir)
|
|||
# read input csv files to combine
|
||||
#========================
|
||||
snpinfo_df = pd.read_csv(infile0, sep = ',')
|
||||
snpinfo_ncols = len(snpinfo_df.columns)
|
||||
snpinfo_nrows = len(snpinfo_df)
|
||||
print('No. of rows in', infile0, ':', snpinfo_nrows
|
||||
, '\nNo. of cols in', infile0, ':', snpinfo_ncols)
|
||||
#snpinfo_ncols = len(snpinfo_df.columns)
|
||||
#snpinfo.shape[0] = len(snpinfo_df)
|
||||
print('No. of rows in', infile0, ':', snpinfo_df.shape[0]
|
||||
, '\nNo. of cols in', infile0, ':', snpinfo_df.shape[1])
|
||||
|
||||
afor_df = pd.read_csv(infile1, sep = ',')
|
||||
afor_ncols = len(afor_df.columns)
|
||||
afor_nrows = len(afor_df)
|
||||
print('No. of rows in', infile1, ':', afor_nrows
|
||||
, '\nNo. of cols in', infile1, ':', afor_ncols)
|
||||
#afor_ncols = len(afor_df.columns)
|
||||
#afor.shape[0] = len(afor_df)
|
||||
print('No. of rows in', infile1, ':', afor_df.shape[0]
|
||||
, '\nNo. of cols in', infile1, ':', afor_df.shape[1])
|
||||
|
||||
afor_kin_df = pd.read_csv(infile2, sep = ',')
|
||||
afor_kin_nrows = len(afor_kin_df)
|
||||
afor_kin_ncols = len(afor_kin_df.columns)
|
||||
print('No. of rows in', infile2, ':', afor_kin_nrows
|
||||
, '\nNo. of cols in', infile2, ':', afor_kin_ncols)
|
||||
#afor_kin.shape[0] = len(afor_kin_df)
|
||||
#afor_kin_ncols = len(afor_kin_df.columns)
|
||||
print('No. of rows in', infile2, ':', afor_kin_df.shape[0]
|
||||
, '\nNo. of cols in', infile2, ':', afor_kin_df.shape[1])
|
||||
|
||||
#%% Process afor_df
|
||||
#1) pull all snp_info so you have ref_allele, etc
|
||||
|
@ -115,19 +115,14 @@ print('No. of rows in', infile2, ':', afor_kin_nrows
|
|||
# find merging column
|
||||
|
||||
left_df = afor_df.copy()
|
||||
left_df_nrows = len(left_df)
|
||||
left_df_ncols = len(left_df.columns)
|
||||
|
||||
right_df = snpinfo_df.copy()
|
||||
right_df_nrows = len(right_df)
|
||||
right_df_ncols = len(right_df.columns)
|
||||
|
||||
common_cols = np.intersect1d(left_df.columns, right_df.columns).tolist()
|
||||
print('Length of common cols:', len(common_cols)
|
||||
, '\ncommon column/s:', common_cols, 'type:', type(common_cols))
|
||||
|
||||
print('selecting consistent dtypes for merging (object i.e string)')
|
||||
#https://stackoverflow.com/questions/44639772/python-pandas-column-dtype-object-causing-merge-to-fail-with-dtypewarning-colu
|
||||
print('selecting consistent dtypes for merging (object i.e string)')
|
||||
merging_cols = left_df[common_cols].select_dtypes(include = [object]).columns.tolist()
|
||||
print(merging_cols)
|
||||
nmerging_cols = len(merging_cols)
|
||||
|
@ -138,24 +133,19 @@ print(' length of merging cols:', nmerging_cols
|
|||
print('Checking for duplicates in common col:', common_cols
|
||||
, '\nNo of duplicates:'
|
||||
, len(right_df[right_df.duplicated(common_cols)])
|
||||
, '\noriginal length:', right_df_nrows)
|
||||
, '\noriginal length:', right_df.shape[0])
|
||||
|
||||
right_df = right_df[~right_df.duplicated(common_cols)]
|
||||
right_df_nrows = len(right_df)
|
||||
print('\nrevised length:', right_df_nrows)
|
||||
print('\nrevised length:', right_df.shape[0])
|
||||
|
||||
# checking cross-over of mutations in the two dfs to merge
|
||||
ndiff1 = afor_nrows - afor_df['mutation'].isin(snpinfo_df['mutation']).sum()
|
||||
ndiff1 = left_df.shape[0] - left_df['mutation'].isin(right_df['mutation']).sum()
|
||||
print('There are', ndiff1, 'mutations with OR, but no snp_info'
|
||||
, '\nExtracting and writing out file')
|
||||
|
||||
#afor_df[afor_df['mutation'].isin(snpinfo_df['mutation'])]
|
||||
missing_mutinfo = afor_df[~afor_df['mutation'].isin(snpinfo_df['mutation'])]
|
||||
#len(missing_mutinfo.duplicated(common_cols))
|
||||
|
||||
missing_mutinfo = left_df[~left_df['mutation'].isin(right_df['mutation'])]
|
||||
#missing_mutinfo.to_csv('infoless_muts.csv')
|
||||
|
||||
ndiff2 = snpinfo_nrows - snpinfo_df['mutation'].isin(afor_df['mutation']).sum()
|
||||
ndiff2 = right_df.shape[0] - right_df['mutation'].isin(left_df['mutation']).sum()
|
||||
print('There are', ndiff2, 'mutations that do not have OR, but have snp_info')
|
||||
|
||||
# Define join type
|
||||
|
@ -166,20 +156,19 @@ my_join = 'left'
|
|||
|
||||
print('combing with join:', my_join)
|
||||
combined_df1 = pd.merge(left_df, right_df, on = merging_cols, how = my_join)
|
||||
print('nrows:', len(combined_df1)
|
||||
, '\nshape:', combined_df1.shape)
|
||||
print('\nshape:', combined_df1.shape)
|
||||
|
||||
# inner = 252
|
||||
left_df_nrows - ndiff1
|
||||
left_df.shape[0] - ndiff1
|
||||
|
||||
# outer = 331
|
||||
right_df_nrows + ndiff1
|
||||
right_df.shape[0] + ndiff1
|
||||
|
||||
# right = 290
|
||||
right_df_nrows
|
||||
right_df.shape[0]
|
||||
|
||||
# left = 293
|
||||
left_df_nrows
|
||||
left_df.shape[0]
|
||||
|
||||
|
||||
#%%
|
||||
|
@ -195,19 +184,19 @@ print('combing with:', my_join)
|
|||
combined_df1 = pd.merge(left_df, right_df, on = merging_cols, how = my_join)
|
||||
|
||||
if my_join == 'inner':
|
||||
#expected_rows = left_df_nrows - ndiff1
|
||||
#expected_rows = left_df.shape[0] - ndiff1
|
||||
expected_rows = left_df.shape[0] - ndiff1
|
||||
|
||||
if my_join == 'outer':
|
||||
#expected_rows = right_df_nrows + ndiff1
|
||||
#expected_rows = right_df.shape[0] + ndiff1
|
||||
expected_rows = right_df.shape[0] + ndiff1
|
||||
|
||||
if my_join == 'right':
|
||||
#expected_rows = right_df_nrows
|
||||
#expected_rows = right_df.shape[0]
|
||||
expected_rows = right_df.shape[0]
|
||||
|
||||
if my_join == 'left':
|
||||
#expected_rows = left_df_nrows
|
||||
#expected_rows = left_df.shape[0]
|
||||
expected_rows = left_df.shape[0]
|
||||
|
||||
expected_cols = left_df.shape[1] + right_df.shape[1] - nmerging_cols
|
||||
|
@ -224,9 +213,186 @@ print('\nExpected no. of rows:', expected_rows
|
|||
if fail:
|
||||
sys.exit()
|
||||
|
||||
# update nrows and ncols
|
||||
afor_info_nrows = len(afor_info_df)
|
||||
afor_info_ncols = len(afor_info_df.columns)
|
||||
#%%
|
||||
# delete variables
|
||||
del(left_df, right_df, common_cols, merging_cols, nmerging_cols, my_join, ndiff1, ndiff2, missing_mutinfo
|
||||
, expected_rows, expected_cols, fail)
|
||||
del(afor_df, snpinfo_df)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#%% Second merge: combined_df1 and afor_kin_df
|
||||
|
||||
left_df = combined_df1.copy()
|
||||
right_df = afor_kin_df.copy()
|
||||
|
||||
common_cols = np.intersect1d(left_df.columns, right_df.columns).tolist()
|
||||
print('Length of common cols:', len(common_cols)
|
||||
, '\ncommon column/s:', common_cols, 'type:', type(common_cols))
|
||||
|
||||
#https://stackoverflow.com/questions/44639772/python-pandas-column-dtype-object-causing-merge-to-fail-with-dtypewarning-colu
|
||||
print('selecting consistent dtypes for merging (object i.e string)')
|
||||
|
||||
#FIXME
|
||||
|
||||
#merging_cols = left_df[common_cols].select_dtypes(include = [object]).columns.tolist()
|
||||
merging_cols = ['wild_type', 'mutant_type', 'mutationinformation']
|
||||
nmerging_cols_cols = len(merging_cols)
|
||||
|
||||
print(merging_cols)
|
||||
nmerging_cols = len(merging_cols)
|
||||
print(' length of merging cols:', nmerging_cols
|
||||
, '\nmerging cols:', merging_cols, 'type:', type(merging_cols))
|
||||
|
||||
ndiff1 = left_df.shape[0] - left_df['mutationinformation'].isin(right_df['mutationinformation']).sum()
|
||||
print('There are', ndiff1, 'mutations with OR, but not in OR kinship'
|
||||
, '\nExtracting and writing out file')
|
||||
missing_mutinfo = left_df[~left_df['mutationinformation'].isin(right_df['mutationinformation'])]
|
||||
#missing_mutinfo.to_csv('infoless_muts.csv')
|
||||
|
||||
ndiff2 = right_df.shape[0] - right_df['mutationinformation'].isin(left_df['mutationinformation']).sum()
|
||||
print('There are', ndiff2, 'mutations that do not have OR, but have OR kinship')
|
||||
|
||||
my_join = 'outer'
|
||||
|
||||
fail = False
|
||||
print('combing with:', my_join)
|
||||
combined_df2 = pd.merge(left_df, right_df, on = merging_cols, how = my_join)
|
||||
|
||||
if my_join == 'inner':
|
||||
#expected_rows = left_df.shape[0] - ndiff1
|
||||
expected_rows = left_df.shape[0] - ndiff1
|
||||
|
||||
if my_join == 'outer':
|
||||
#expected_rows = right_df.shape[0] + ndiff1
|
||||
expected_rows = right_df.shape[0] + ndiff1
|
||||
|
||||
if my_join == 'right':
|
||||
#expected_rows = right_df.shape[0]
|
||||
expected_rows = right_df.shape[0]
|
||||
|
||||
if my_join == 'left':
|
||||
#expected_rows = left_df.shape[0]
|
||||
expected_rows = left_df.shape[0]
|
||||
|
||||
expected_cols = left_df.shape[1] + right_df.shape[1] - nmerging_cols
|
||||
|
||||
if len(combined_df2) == expected_rows and len(combined_df2.columns) == expected_cols:
|
||||
print('PASS: successfully combined dfs with:', my_join, 'join')
|
||||
else:
|
||||
print('FAIL: combined_df\'s expected rows and cols not matched')
|
||||
fail = True
|
||||
print('\nExpected no. of rows:', expected_rows
|
||||
, '\nGot:', len(combined_df2)
|
||||
, '\nExpected no. of cols:', expected_cols
|
||||
, '\nGot:', len(combined_df2.columns))
|
||||
if fail:
|
||||
sys.exit()
|
||||
#%% check duplicate cols: ones containing suffix '_x' or '_y'
|
||||
# should only be position
|
||||
foo = combined_df2.filter(regex = r'.*_x|_y', axis = 1)
|
||||
print(foo.columns) # should only be position
|
||||
|
||||
# drop position col containing suffix '_y' and then rename col without suffix
|
||||
combined_or_df = combined_df2.drop(combined_df2.filter(regex = r'.*_y').columns, axis = 1)
|
||||
#combined_or_df['position_x'].head()
|
||||
|
||||
# renaming columns
|
||||
#combined_or_df.rename(columns = {'position_x': 'position'}, inplace = True)
|
||||
#combined_or_df['position'].head()
|
||||
#recheck
|
||||
#foo = combined_or_df.filter(regex = r'.*_x|_y', axis = 1)
|
||||
#print(foo.columns) # should only be empty
|
||||
|
||||
|
||||
# remove '_x' from some cols
|
||||
|
||||
import re
|
||||
def clean_colnames(colname):
|
||||
|
||||
if re.search('.*_x', colname):
|
||||
pos = re.search('.*_x', colname).start()
|
||||
return colname[:pos]
|
||||
else:
|
||||
return colname
|
||||
|
||||
#https://stackoverflow.com/questions/26500156/renaming-column-in-dataframe-for-pandas-using-regular-expression
|
||||
combined_or_df.columns
|
||||
combined_or_df.rename(columns=lambda x: re.sub('_x$','',x), inplace = True)
|
||||
combined_or_df.columns
|
||||
|
||||
#FIXME: this should be 0 when you run the 35k dataset
|
||||
combined_or_df['chromosome_number'].isna().sum()
|
||||
|
||||
#%% rearraging columns
|
||||
print('Dim of df prefromatting:', combined_or_df.shape)
|
||||
|
||||
print(combined_or_df.columns, '\nshape:', combined_or_df.shape)
|
||||
|
||||
# removing unnecessary column
|
||||
combined_or_df = combined_or_df.drop(['symbol'], axis = 1)
|
||||
print(combined_or_df.columns, '\nshape:', combined_or_df.shape)
|
||||
#%% reorder columns
|
||||
#https://stackoverflow.com/questions/13148429/how-to-change-the-order-of-dataframe-columns
|
||||
# setting column's order
|
||||
output_df = combined_or_df[['mutation',
|
||||
'mutationinformation',
|
||||
'wild_type',
|
||||
'position',
|
||||
'mutant_type',
|
||||
'chr_num_allele',
|
||||
'ref_allele',
|
||||
'alt_allele',
|
||||
'mut_info',
|
||||
'mut_type',
|
||||
'gene_id',
|
||||
'gene_number',
|
||||
'mut_region',
|
||||
'reference_allele',
|
||||
'alternate_allele',
|
||||
'chromosome_number',
|
||||
'af',
|
||||
'af_kin',
|
||||
'or_kin',
|
||||
'or_logistic',
|
||||
'or_mychisq',
|
||||
'est_chisq',
|
||||
'or_fisher',
|
||||
'ci_low_logistic',
|
||||
'ci_hi_logistic',
|
||||
'ci_low_fisher',
|
||||
'ci_hi_fisher',
|
||||
'pwald_kin',
|
||||
'pval_logistic',
|
||||
'pval_fisher',
|
||||
'pval_chisq',
|
||||
'beta_logistic',
|
||||
'beta_kin',
|
||||
'se_logistic',
|
||||
'se_kin',
|
||||
'zval_logistic',
|
||||
'logl_H1_kin',
|
||||
'l_remle_kin',
|
||||
'wt_3let',
|
||||
'mt_3let',
|
||||
'n_diff',
|
||||
'tot_diff',
|
||||
'n_miss']]
|
||||
|
||||
# sanity check after rearranging
|
||||
if combined_or_df.shape == output_df.shape and set(combined_or_df.columns) == set(output_df.columns):
|
||||
print('PASS: Successfully formatted df with rearranged columns')
|
||||
else:
|
||||
sys.exit('FAIL: something went wrong when rearranging columns!')
|
||||
|
||||
#%% write file
|
||||
print('\n====================================================================='
|
||||
, '\nWriting output file:\n', outfile
|
||||
, '\nNo.of rows:', len(output_df)
|
||||
, '\nNo. of cols:', len(output_df.columns))
|
||||
output_df.to_csv(outfile, index = False)
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue