diff --git a/scripts/plotting/mcsm_mean_affinity_ensemble.R b/scripts/plotting/mcsm_mean_affinity_ensemble.R index 7416a27..35b67b4 100644 --- a/scripts/plotting/mcsm_mean_affinity_ensemble.R +++ b/scripts/plotting/mcsm_mean_affinity_ensemble.R @@ -103,7 +103,7 @@ cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols # Ensemble affinity ##################### # extract outcome cols and map numeric values to the categories -# Destabilising == 1, and stabilising == 0 +# Destabilising == 0, and stabilising == 1 so rescaling can let -1 be destabilising df3_plot = df3[, cols_to_extract] df3_plot[, outcome_cols_aff] <- sapply(df3_plot[, outcome_cols_aff] diff --git a/scripts/plotting/mcsm_mean_stability_ensemble.R b/scripts/plotting/mcsm_mean_stability_ensemble.R index baba72d..6d63764 100644 --- a/scripts/plotting/mcsm_mean_stability_ensemble.R +++ b/scripts/plotting/mcsm_mean_stability_ensemble.R @@ -84,8 +84,12 @@ outcome_cols_aff = c("duet_outcome" #,"provean_outcome" #,"snap2_outcome" ) -cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols, scaled_cols,outcome_cols)] -cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols, outcome_cols)] +cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols + , scaled_cols + , outcome_cols)] + +cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols + , outcome_cols)] ############################################################## #####################