working on dissected model, testing diff feature groups
This commit is contained in:
parent
135efcee41
commit
e68a153883
4 changed files with 270 additions and 161 deletions
|
@ -74,11 +74,11 @@ import json
|
||||||
rs = {'random_state': 42}
|
rs = {'random_state': 42}
|
||||||
njobs = {'n_jobs': 10}
|
njobs = {'n_jobs': 10}
|
||||||
|
|
||||||
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
||||||
, 'accuracy' : make_scorer(accuracy_score)
|
|
||||||
, 'fscore' : make_scorer(f1_score)
|
, 'fscore' : make_scorer(f1_score)
|
||||||
, 'precision' : make_scorer(precision_score)
|
, 'precision' : make_scorer(precision_score)
|
||||||
, 'recall' : make_scorer(recall_score)
|
, 'recall' : make_scorer(recall_score)
|
||||||
|
, 'accuracy' : make_scorer(accuracy_score)
|
||||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||||
, 'jcc' : make_scorer(jaccard_score)
|
, 'jcc' : make_scorer(jaccard_score)
|
||||||
})
|
})
|
||||||
|
@ -137,7 +137,9 @@ def MultModelsCl(input_df, target, skf_cv
|
||||||
col_transform = ColumnTransformer(transformers = t
|
col_transform = ColumnTransformer(transformers = t
|
||||||
, remainder='passthrough')
|
, remainder='passthrough')
|
||||||
|
|
||||||
|
#======================================================
|
||||||
# Specify multiple Classification models
|
# Specify multiple Classification models
|
||||||
|
#======================================================
|
||||||
models = [('Logistic Regression' , LogisticRegression(**rs) )
|
models = [('Logistic Regression' , LogisticRegression(**rs) )
|
||||||
, ('Logistic RegressionCV' , LogisticRegressionCV(**rs) )
|
, ('Logistic RegressionCV' , LogisticRegressionCV(**rs) )
|
||||||
, ('Gaussian NB' , GaussianNB() )
|
, ('Gaussian NB' , GaussianNB() )
|
||||||
|
|
|
@ -78,10 +78,10 @@ rs = {'random_state': 42}
|
||||||
njobs = {'n_jobs': 10}
|
njobs = {'n_jobs': 10}
|
||||||
|
|
||||||
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
||||||
, 'accuracy' : make_scorer(accuracy_score)
|
|
||||||
, 'fscore' : make_scorer(f1_score)
|
, 'fscore' : make_scorer(f1_score)
|
||||||
, 'precision' : make_scorer(precision_score)
|
, 'precision' : make_scorer(precision_score)
|
||||||
, 'recall' : make_scorer(recall_score)
|
, 'recall' : make_scorer(recall_score)
|
||||||
|
, 'accuracy' : make_scorer(accuracy_score)
|
||||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||||
, 'jcc' : make_scorer(jaccard_score)
|
, 'jcc' : make_scorer(jaccard_score)
|
||||||
})
|
})
|
||||||
|
@ -103,7 +103,6 @@ def MultModelsCl_dissected(input_df, target, skf_cv
|
||||||
, blind_test_target
|
, blind_test_target
|
||||||
, add_cm = True # adds confusion matrix based on cross_val_predict
|
, add_cm = True # adds confusion matrix based on cross_val_predict
|
||||||
, add_yn = True # adds target var class numbers
|
, add_yn = True # adds target var class numbers
|
||||||
, feature_groups = ['']
|
|
||||||
, var_type = ['numerical', 'categorical','mixed']):
|
, var_type = ['numerical', 'categorical','mixed']):
|
||||||
|
|
||||||
'''
|
'''
|
||||||
|
@ -123,13 +122,17 @@ def MultModelsCl_dissected(input_df, target, skf_cv
|
||||||
Dict containing multiple classification scores for each model and mean of each Stratified Kfold including training
|
Dict containing multiple classification scores for each model and mean of each Stratified Kfold including training
|
||||||
'''
|
'''
|
||||||
|
|
||||||
|
#======================================================
|
||||||
# Determine categorical and numerical features
|
# Determine categorical and numerical features
|
||||||
|
#======================================================
|
||||||
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
|
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
|
||||||
numerical_ix
|
numerical_ix
|
||||||
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
|
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
|
||||||
categorical_ix
|
categorical_ix
|
||||||
|
|
||||||
|
#======================================================
|
||||||
# Determine preprocessing steps ~ var_type
|
# Determine preprocessing steps ~ var_type
|
||||||
|
#======================================================
|
||||||
if var_type == 'numerical':
|
if var_type == 'numerical':
|
||||||
t = [('num', MinMaxScaler(), numerical_ix)]
|
t = [('num', MinMaxScaler(), numerical_ix)]
|
||||||
|
|
||||||
|
@ -143,7 +146,9 @@ def MultModelsCl_dissected(input_df, target, skf_cv
|
||||||
col_transform = ColumnTransformer(transformers = t
|
col_transform = ColumnTransformer(transformers = t
|
||||||
, remainder='passthrough')
|
, remainder='passthrough')
|
||||||
|
|
||||||
# Specify multiple Classification models
|
#======================================================
|
||||||
|
# Specify multiple Classification Models
|
||||||
|
#======================================================
|
||||||
models = [('Logistic Regression' , LogisticRegression(**rs) )
|
models = [('Logistic Regression' , LogisticRegression(**rs) )
|
||||||
, ('Logistic RegressionCV' , LogisticRegressionCV(**rs) )
|
, ('Logistic RegressionCV' , LogisticRegressionCV(**rs) )
|
||||||
, ('Gaussian NB' , GaussianNB() )
|
, ('Gaussian NB' , GaussianNB() )
|
||||||
|
@ -206,7 +211,7 @@ def MultModelsCl_dissected(input_df, target, skf_cv
|
||||||
|
|
||||||
#######################################################################
|
#######################################################################
|
||||||
#======================================================
|
#======================================================
|
||||||
# Option 1: Add confusion matrix from cross_val_predict
|
# Option: Add confusion matrix from cross_val_predict
|
||||||
# Understand and USE with caution
|
# Understand and USE with caution
|
||||||
# cross_val_score, cross_val_predict, "Passing these predictions into an evaluation metric may not be a valid way to measure generalization performance. Results can differ from cross_validate and cross_val_score unless all tests sets have equal size and the metric decomposes over samples."
|
# cross_val_score, cross_val_predict, "Passing these predictions into an evaluation metric may not be a valid way to measure generalization performance. Results can differ from cross_validate and cross_val_score unless all tests sets have equal size and the metric decomposes over samples."
|
||||||
# https://stackoverflow.com/questions/65645125/producing-a-confusion-matrix-with-cross-validate
|
# https://stackoverflow.com/questions/65645125/producing-a-confusion-matrix-with-cross-validate
|
||||||
|
@ -237,7 +242,7 @@ def MultModelsCl_dissected(input_df, target, skf_cv
|
||||||
skf_cv_modD = skf_cv_modD
|
skf_cv_modD = skf_cv_modD
|
||||||
#######################################################################
|
#######################################################################
|
||||||
#=============================================
|
#=============================================
|
||||||
# Option 2: Add targety numbers for data
|
# Option: Add targety numbers for data
|
||||||
#=============================================
|
#=============================================
|
||||||
if add_yn:
|
if add_yn:
|
||||||
|
|
||||||
|
|
|
@ -417,125 +417,37 @@ else:
|
||||||
#---------------------------------------
|
#---------------------------------------
|
||||||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||||
|
|
||||||
#%%########################################################################
|
#%% Data for ML ###############################################################
|
||||||
#==========================
|
#==========================
|
||||||
# Data for ML
|
# Data for ML
|
||||||
#==========================
|
#==========================
|
||||||
my_df_ml = my_df.copy()
|
my_df_ml = my_df.copy()
|
||||||
|
|
||||||
#%% Build X: input for ML
|
# Build column names to mask for affinity chanhes
|
||||||
common_cols_stabiltyN = ['ligand_distance'
|
|
||||||
, 'ligand_affinity_change'
|
|
||||||
, 'duet_stability_change'
|
|
||||||
, 'ddg_foldx'
|
|
||||||
, 'deepddg'
|
|
||||||
, 'ddg_dynamut2'
|
|
||||||
, 'mmcsm_lig'
|
|
||||||
, 'contacts']
|
|
||||||
|
|
||||||
# Build stability columns ~ gene
|
|
||||||
if gene.lower() in geneL_basic:
|
if gene.lower() in geneL_basic:
|
||||||
X_stabilityN = common_cols_stabiltyN
|
#X_stabilityN = common_cols_stabiltyN
|
||||||
|
gene_affinity_colnames = []# not needed as its a common one
|
||||||
cols_to_mask = ['ligand_affinity_change']
|
cols_to_mask = ['ligand_affinity_change']
|
||||||
|
|
||||||
if gene.lower() in geneL_ppi2:
|
if gene.lower() in geneL_ppi2:
|
||||||
# X_stabilityN = common_cols_stabiltyN + ['mcsm_ppi2_affinity' , 'interface_dist']
|
gene_affinity_colnames = ['mcsm_ppi2_affinity', 'interface_dist']
|
||||||
geneL_ppi2_st_cols = ['mcsm_ppi2_affinity', 'interface_dist']
|
#X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
|
||||||
X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
|
|
||||||
cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity']
|
cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity']
|
||||||
|
|
||||||
if gene.lower() in geneL_na:
|
if gene.lower() in geneL_na:
|
||||||
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity']
|
gene_affinity_colnames = ['mcsm_na_affinity']
|
||||||
geneL_na_st_cols = ['mcsm_na_affinity']
|
#X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
|
||||||
X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
|
|
||||||
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity']
|
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity']
|
||||||
|
|
||||||
if gene.lower() in geneL_na_ppi2:
|
if gene.lower() in geneL_na_ppi2:
|
||||||
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
|
gene_affinity_colnames = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
|
||||||
geneL_na_ppi2_st_cols = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
|
#X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
|
||||||
X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
|
|
||||||
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity']
|
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity']
|
||||||
|
|
||||||
|
|
||||||
X_foldX_cols = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
|
|
||||||
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
|
|
||||||
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
|
|
||||||
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
|
|
||||||
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
|
|
||||||
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss'
|
|
||||||
]
|
|
||||||
|
|
||||||
X_str = ['rsa'
|
|
||||||
#, 'asa'
|
|
||||||
, 'kd_values'
|
|
||||||
, 'rd_values']
|
|
||||||
|
|
||||||
X_ssFN = X_stabilityN + X_str + X_foldX_cols
|
|
||||||
|
|
||||||
X_evolFN = ['consurf_score'
|
|
||||||
, 'snap2_score'
|
|
||||||
, 'provean_score']
|
|
||||||
|
|
||||||
X_genomic_mafor = ['maf'
|
|
||||||
, 'logorI'
|
|
||||||
# , 'or_rawI'
|
|
||||||
# , 'or_mychisq'
|
|
||||||
# , 'or_logistic'
|
|
||||||
# , 'or_fisher'
|
|
||||||
# , 'pval_fisher'
|
|
||||||
]
|
|
||||||
|
|
||||||
X_genomic_linegae = ['lineage_proportion'
|
|
||||||
, 'dist_lineage_proportion'
|
|
||||||
#, 'lineage' # could be included as a category but it has L2;L4 formatting
|
|
||||||
, 'lineage_count_all'
|
|
||||||
, 'lineage_count_unique'
|
|
||||||
]
|
|
||||||
|
|
||||||
X_genomicFN = X_genomic_mafor + X_genomic_linegae
|
|
||||||
|
|
||||||
#X_aaindexFN = list(aa_df_cols)
|
|
||||||
|
|
||||||
#print('\nTotal no. of features for aaindex:', len(X_aaindexFN))
|
|
||||||
|
|
||||||
# numerical feature names [NO aa_index]
|
|
||||||
numerical_FN = X_ssFN + X_evolFN + X_genomicFN
|
|
||||||
|
|
||||||
|
|
||||||
# categorical feature names
|
|
||||||
categorical_FN = ['ss_class'
|
|
||||||
# , 'wt_prop_water'
|
|
||||||
# , 'mut_prop_water'
|
|
||||||
# , 'wt_prop_polarity'
|
|
||||||
# , 'mut_prop_polarity'
|
|
||||||
# , 'wt_calcprop'
|
|
||||||
# , 'mut_calcprop'
|
|
||||||
, 'aa_prop_change'
|
|
||||||
, 'electrostatics_change'
|
|
||||||
, 'polarity_change'
|
|
||||||
, 'water_change'
|
|
||||||
, 'drtype_mode_labels' # beware then you can't use it to predict [USED it for uq_v1, not v2]
|
|
||||||
, 'active_site' #[didn't use it for uq_v1]
|
|
||||||
#, 'gene_name' # will be required for the combined stuff
|
|
||||||
]
|
|
||||||
#----------------------------------------------
|
|
||||||
# count numerical and categorical features
|
|
||||||
#----------------------------------------------
|
|
||||||
|
|
||||||
print('\nNo. of numerical features:', len(numerical_FN)
|
|
||||||
, '\nNo. of categorical features:', len(categorical_FN))
|
|
||||||
|
|
||||||
###########################################################################
|
|
||||||
#=======================
|
#=======================
|
||||||
# Masking columns:
|
# Masking columns:
|
||||||
# (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
|
# (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
|
||||||
#=======================
|
#=======================
|
||||||
# my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts()
|
|
||||||
# my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
|
|
||||||
|
|
||||||
# my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0
|
|
||||||
# (my_df_ml['ligand_affinity_change'] == 0).sum()
|
|
||||||
|
|
||||||
my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts()
|
my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts()
|
||||||
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
|
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
|
||||||
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts()
|
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts()
|
||||||
|
@ -546,16 +458,139 @@ my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask] = 0
|
||||||
|
|
||||||
mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask]
|
mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask]
|
||||||
|
|
||||||
|
#===================================================
|
||||||
# write file for check
|
# write file for check
|
||||||
mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True)
|
mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True)
|
||||||
mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv')
|
mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv')
|
||||||
|
|
||||||
#===================================================
|
#===================================================
|
||||||
|
###############################################################################
|
||||||
|
#%% Feature groups (FG): Build X for Input ML
|
||||||
|
############################################################################
|
||||||
|
#===========================
|
||||||
|
# FG1: Evolutionary features
|
||||||
|
#===========================
|
||||||
|
X_evolFN = ['consurf_score'
|
||||||
|
, 'snap2_score'
|
||||||
|
, 'provean_score']
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
#========================
|
||||||
|
# FG2: Stability features
|
||||||
|
#========================
|
||||||
|
#--------
|
||||||
|
# common
|
||||||
|
#--------
|
||||||
|
X_common_stability_Fnum = [
|
||||||
|
'duet_stability_change'
|
||||||
|
, 'ddg_foldx'
|
||||||
|
, 'deepddg'
|
||||||
|
, 'ddg_dynamut2'
|
||||||
|
, 'mmcsm_lig'
|
||||||
|
, 'contacts']
|
||||||
|
#--------
|
||||||
|
# FoldX
|
||||||
|
#--------
|
||||||
|
X_foldX_Fnum = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
|
||||||
|
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
|
||||||
|
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
|
||||||
|
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
|
||||||
|
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
|
||||||
|
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss']
|
||||||
|
|
||||||
|
X_stability_FN = X_common_stability_Fnum + X_foldX_Fnum
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
#===================
|
||||||
|
# FG3: Affinity features
|
||||||
|
#===================
|
||||||
|
common_affinity_Fnum = ['ligand_distance'
|
||||||
|
, 'ligand_affinity_change']
|
||||||
|
|
||||||
|
# if gene.lower() in geneL_basic:
|
||||||
|
# X_affinityFN = common_affinity_Fnum
|
||||||
|
# else:
|
||||||
|
# X_affinityFN = common_affinity_Fnum + gene_affinity_colnames
|
||||||
|
|
||||||
|
X_affinityFN = common_affinity_Fnum + gene_affinity_colnames
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
#============================
|
||||||
|
# FG4: Residue level features
|
||||||
|
#============================
|
||||||
|
#-----------
|
||||||
|
# AA index
|
||||||
|
#-----------
|
||||||
|
X_aaindex_Fnum = list(aa_df_cols)
|
||||||
|
print('\nTotal no. of features for aaindex:', len(X_aaindex_Fnum))
|
||||||
|
|
||||||
|
#-----------------
|
||||||
|
# surface area
|
||||||
|
# depth
|
||||||
|
# hydrophobicity
|
||||||
|
#-----------------
|
||||||
|
X_str_Fnum = ['rsa'
|
||||||
|
#, 'asa'
|
||||||
|
, 'kd_values'
|
||||||
|
, 'rd_values']
|
||||||
|
|
||||||
|
#---------------------------
|
||||||
|
# Other aa properties
|
||||||
|
# active site indication
|
||||||
|
#---------------------------
|
||||||
|
X_aap_Fcat = ['ss_class'
|
||||||
|
# , 'wt_prop_water'
|
||||||
|
# , 'mut_prop_water'
|
||||||
|
# , 'wt_prop_polarity'
|
||||||
|
# , 'mut_prop_polarity'
|
||||||
|
# , 'wt_calcprop'
|
||||||
|
# , 'mut_calcprop'
|
||||||
|
, 'aa_prop_change'
|
||||||
|
, 'electrostatics_change'
|
||||||
|
, 'polarity_change'
|
||||||
|
, 'water_change'
|
||||||
|
, 'active_site']
|
||||||
|
|
||||||
|
|
||||||
|
X_resprop_FN = X_aaindex_Fnum + X_str_Fnum + X_aap_Fcat
|
||||||
|
###############################################################################
|
||||||
|
#========================
|
||||||
|
# FG5: Genomic features
|
||||||
|
#========================
|
||||||
|
X_gn_mafor_Fnum = ['maf'
|
||||||
|
, 'logorI'
|
||||||
|
# , 'or_rawI'
|
||||||
|
# , 'or_mychisq'
|
||||||
|
# , 'or_logistic'
|
||||||
|
# , 'or_fisher'
|
||||||
|
# , 'pval_fisher'
|
||||||
|
]
|
||||||
|
|
||||||
|
X_gn_linegae_Fnum = ['lineage_proportion'
|
||||||
|
, 'dist_lineage_proportion'
|
||||||
|
#, 'lineage' # could be included as a category but it has L2;L4 formatting
|
||||||
|
, 'lineage_count_all'
|
||||||
|
, 'lineage_count_unique'
|
||||||
|
]
|
||||||
|
|
||||||
|
X_gn_Fcat = ['drtype_mode_labels' # beware then you can't use it to predict [USED it for uq_v1, not v2]
|
||||||
|
#, 'gene_name' # will be required for the combined stuff
|
||||||
|
]
|
||||||
|
|
||||||
|
X_genomicFN = X_gn_mafor_Fnum + X_gn_linegae_Fnum + X_gn_Fcat
|
||||||
|
###############################################################################
|
||||||
|
# Feature groups further collaps:
|
||||||
|
X_structural_FN = X_stability_FN + X_affinityFN + X_resprop_FN
|
||||||
|
|
||||||
|
all_featuresN = X_evolFN + X_structural_FN + X_genomicFN
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
#%% Define training and test data
|
||||||
|
#======================================================
|
||||||
# Training and BLIND test set [UQ]: actual vs imputed
|
# Training and BLIND test set [UQ]: actual vs imputed
|
||||||
# No aa index but active_site included
|
# No aa index but active_site included
|
||||||
# dst with actual values : training set
|
# dst with actual values : training set
|
||||||
# dst with imputed values : blind test
|
# dst with imputed values : blind test
|
||||||
#==================================================
|
#======================================================
|
||||||
my_df_ml[drug].isna().sum() #'na' ones are the blind_test set
|
my_df_ml[drug].isna().sum() #'na' ones are the blind_test set
|
||||||
|
|
||||||
blind_test_df = my_df_ml[my_df_ml[drug].isna()]
|
blind_test_df = my_df_ml[my_df_ml[drug].isna()]
|
||||||
|
@ -567,6 +602,7 @@ training_df.shape
|
||||||
# Target 1: dst_mode
|
# Target 1: dst_mode
|
||||||
training_df[drug].value_counts()
|
training_df[drug].value_counts()
|
||||||
training_df['dst_mode'].value_counts()
|
training_df['dst_mode'].value_counts()
|
||||||
|
|
||||||
####################################################################
|
####################################################################
|
||||||
#============
|
#============
|
||||||
# ML data
|
# ML data
|
||||||
|
@ -574,8 +610,8 @@ training_df['dst_mode'].value_counts()
|
||||||
#------
|
#------
|
||||||
# X: Training and Blind test (BTS)
|
# X: Training and Blind test (BTS)
|
||||||
#------
|
#------
|
||||||
X = training_df[numerical_FN + categorical_FN]
|
X = training_df[all_featuresN]
|
||||||
X_bts = blind_test_df[numerical_FN + categorical_FN]
|
X_bts = blind_test_df[all_featuresN]
|
||||||
|
|
||||||
#------
|
#------
|
||||||
# y
|
# y
|
||||||
|
@ -601,19 +637,67 @@ yc1_ratio = yc1[0]/yc1[1]
|
||||||
yc2 = Counter(y_bts)
|
yc2 = Counter(y_bts)
|
||||||
yc2_ratio = yc2[0]/yc2[1]
|
yc2_ratio = yc2[0]/yc2[1]
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
#======================================================
|
||||||
|
# Determine categorical and numerical features
|
||||||
|
#======================================================
|
||||||
|
numerical_cols = X.select_dtypes(include=['int64', 'float64']).columns
|
||||||
|
numerical_cols
|
||||||
|
categorical_cols = X.select_dtypes(include=['object', 'bool']).columns
|
||||||
|
categorical_cols
|
||||||
|
|
||||||
|
################################################################################
|
||||||
|
# IMPORTANT sanity checks
|
||||||
|
if len(X.columns) == len(X_evolFN) + len(X_stability_FN) + len(X_affinityFN) + len(X_resprop_FN) + len(X_genomicFN):
|
||||||
|
print('\nPASS: ML data with input features, training and test generated...'
|
||||||
|
, '\n\nTotal no. of input features:' , len(X.columns)
|
||||||
|
, '\n--------No. of numerical features:' , len(numerical_cols)
|
||||||
|
, '\n--------No. of categorical features:' , len(categorical_cols)
|
||||||
|
|
||||||
|
, '\n\nTotal no. of evolutionary features:' , len(X_evolFN)
|
||||||
|
|
||||||
|
, '\n\nTotal no. of stability features:' , len(X_stability_FN)
|
||||||
|
, '\n--------Common stabilty cols:' , len(X_common_stability_Fnum)
|
||||||
|
, '\n--------Foldx cols:' , len(X_foldX_Fnum)
|
||||||
|
|
||||||
|
, '\n\nTotal no. of affinity features:' , len(X_affinityFN)
|
||||||
|
, '\n--------Common affinity cols:' , len(common_affinity_Fnum)
|
||||||
|
, '\n--------Gene specific affinity cols:' , len(gene_affinity_colnames)
|
||||||
|
|
||||||
|
, '\n\nTotal no. of residue level features:', len(X_resprop_FN)
|
||||||
|
, '\n--------AA index cols:' , len(X_aaindex_Fnum)
|
||||||
|
, '\n--------Residue Prop cols:' , len(X_str_Fnum)
|
||||||
|
, '\n--------AA change Prop cols:' , len(X_aap_Fcat)
|
||||||
|
|
||||||
|
, '\n\nTotal no. of genomic features:' , len(X_genomicFN)
|
||||||
|
, '\n--------MAF+OR cols:' , len(X_gn_mafor_Fnum)
|
||||||
|
, '\n--------Lineage cols:' , len(X_gn_linegae_Fnum)
|
||||||
|
, '\n--------Other cols:' , len(X_gn_Fcat)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
print('\nFAIL: numbers mismatch'
|
||||||
|
, '\nExpected:',len(X_evolFN) + len(X_stability_FN) + len(X_affinityFN) + len(X_resprop_FN) + len(X_genomicFN)
|
||||||
|
, '\nGot:', len(X.columns))
|
||||||
|
sys.exit()
|
||||||
|
###############################################################################
|
||||||
print('\n-------------------------------------------------------------'
|
print('\n-------------------------------------------------------------'
|
||||||
, '\nSuccessfully split data: UQ [no aa_index but active site included] training'
|
, '\nSuccessfully split data: ALL features'
|
||||||
, '\nactual values: training set'
|
, '\nactual values: training set'
|
||||||
, '\nimputed values: blind test set'
|
, '\nimputed values: blind test set'
|
||||||
, '\nTrain data size:', X.shape
|
|
||||||
, '\nTest data size:', X_bts.shape
|
, '\n\nTotal data size:', len(X) + len(X_bts)
|
||||||
|
|
||||||
|
, '\n\nTrain data size:', X.shape
|
||||||
, '\ny_train numbers:', yc1
|
, '\ny_train numbers:', yc1
|
||||||
, '\ny_train ratio:',yc1_ratio
|
|
||||||
, '\n'
|
, '\n\nTest data size:', X_bts.shape
|
||||||
, '\ny_test_numbers:', yc2
|
, '\ny_test_numbers:', yc2
|
||||||
|
|
||||||
|
, '\n\ny_train ratio:',yc1_ratio
|
||||||
, '\ny_test ratio:', yc2_ratio
|
, '\ny_test ratio:', yc2_ratio
|
||||||
, '\n-------------------------------------------------------------'
|
, '\n-------------------------------------------------------------'
|
||||||
)
|
)
|
||||||
|
|
||||||
###########################################################################
|
###########################################################################
|
||||||
#%%
|
#%%
|
||||||
###########################################################################
|
###########################################################################
|
||||||
|
|
|
@ -47,60 +47,78 @@ outdir_ml = outdir + 'ml/uq_v1/dissected'
|
||||||
print('\nOutput directory:', outdir_ml)
|
print('\nOutput directory:', outdir_ml)
|
||||||
|
|
||||||
#%%###########################################################################
|
#%%###########################################################################
|
||||||
print('\nSanity checks:'
|
|
||||||
, '\nTotal input features:', len(X.columns)
|
|
||||||
, '\n'
|
|
||||||
, '\nTraining data size:', X.shape
|
|
||||||
, '\nTest data size:', X_bts.shape
|
|
||||||
, '\n'
|
|
||||||
, '\nTarget feature numbers (training data):', Counter(y)
|
|
||||||
, '\nTarget features ratio (training data:', yc1_ratio
|
|
||||||
, '\n'
|
|
||||||
, '\nTarget feature numbers (test data):', Counter(y_bts)
|
|
||||||
, '\nTarget features ratio (test data):', yc2_ratio
|
|
||||||
|
|
||||||
, '\n\n#####################################################################\n')
|
|
||||||
|
|
||||||
print('\n================================================================\n')
|
print('\n================================================================\n')
|
||||||
|
|
||||||
print('Strucutral features (n):'
|
, '\n\nTotal no. of evolutionary features:' , len(X_evolFN)
|
||||||
, len(X_ssFN)
|
|
||||||
, '\nThese are:'
|
|
||||||
, '\nCommon stablity features:', X_stabilityN
|
|
||||||
, '\nFoldX columns:', X_foldX_cols
|
|
||||||
, '\nOther struc columns:', X_str
|
|
||||||
, '\n================================================================\n')
|
|
||||||
|
|
||||||
# print('AAindex features (n):'
|
, '\n\nTotal no. of stability features:' , len(X_stability_FN)
|
||||||
# , len(X_aaindexFN)
|
, '\n--------Common stabilty cols:' , len(X_common_stability_Fnum)
|
||||||
# , '\nThese are:\n'
|
, '\n--------Foldx cols:' , len(X_foldX_Fnum)
|
||||||
# , X_aaindexFN
|
|
||||||
# , '\n================================================================\n')
|
|
||||||
|
|
||||||
print('Evolutionary features (n):'
|
, '\n\nTotal no. of affinity features:' , len(X_affinityFN)
|
||||||
, len(X_evolFN)
|
, '\n--------Common affinity cols:' , len(common_affinity_Fnum)
|
||||||
, '\nThese are:\n'
|
, '\n--------Gene specific affinity cols:' , len(gene_affinity_colnames)
|
||||||
, X_evolFN
|
|
||||||
, '\n================================================================\n')
|
|
||||||
|
|
||||||
print('Genomic features (n):'
|
, '\n\nTotal no. of residue level features:', len(X_resprop_FN)
|
||||||
, len(X_genomicFN)
|
, '\n--------AA index cols:' , len(X_aaindex_Fnum)
|
||||||
, '\nThese are:\n'
|
, '\n--------Residue Prop cols:' , len(X_str_Fnum)
|
||||||
, X_genomic_mafor, '\n'
|
, '\n--------AA change Prop cols:' , len(X_aap_Fcat)
|
||||||
, X_genomic_linegae
|
|
||||||
, '\n================================================================\n')
|
|
||||||
|
|
||||||
print('Categorical features (n):'
|
, '\n\nTotal no. of genomic features:' , len(X_genomicFN)
|
||||||
, len(categorical_FN)
|
, '\n--------MAF+OR cols:' , len(X_gn_mafor_Fnum)
|
||||||
, '\nThese are:\n'
|
, '\n--------Lineage cols:' , len(X_gn_linegae_Fnum)
|
||||||
, categorical_FN
|
, '\n--------Other cols:' , len(X_gn_Fcat)
|
||||||
, '\n================================================================\n')
|
|
||||||
|
|
||||||
#if ( len(X.columns) == len(X_ssFN) + len(X_aaindexFN) + len(X_evolFN) + len(X_genomicFN) + len(categorical_FN) ):
|
X_structural_FN = X_stability_FN + X_affinityFN + X_resprop_FN
|
||||||
if ( len(X.columns) == len(X_ssFN) + len(X_evolFN) + len(X_genomicFN) + len(categorical_FN) ):
|
X_aaindex_Fnum + X_str_Fnum + X_aap_Fcat
|
||||||
|
all_featuresN = X_evolFN + X_structural_FN + X_genomicFN
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
print('\n================================================================'
|
||||||
|
|
||||||
|
, '\nTotal Evolutionary features (n):' , len(X_evolFN)
|
||||||
|
, '\n--------------Evol. feature colnames:', X_evolFN
|
||||||
|
|
||||||
|
, '\n================================================================'
|
||||||
|
|
||||||
|
, '\n\nTotal structural features (n):', len(X_structural_FN)
|
||||||
|
|
||||||
|
, '\n--------Stability ncols:' , len(X_stability_FN)
|
||||||
|
, '\n--------------Common stability colnames:' , X_common_stability_Fnum
|
||||||
|
, '\n--------------Foldx colnames:' , X_foldX_Fnum
|
||||||
|
|
||||||
|
, '\n--------Affinity ncols:' , len(X_affinityFN)
|
||||||
|
, '\n--------------Common affinity colnames:' , common_affinity_Fnum
|
||||||
|
, '\n--------------Gene specific affinity colnames:', gene_affinity_colnames
|
||||||
|
|
||||||
|
, '\n--------Residue prop ncols:' , len(X_resprop_FN)
|
||||||
|
, '\n--------------Residue Prop cols:' , X_str_Fnum
|
||||||
|
, '\n--------------AA change Prop cols:' , X_aap_Fcat
|
||||||
|
, '\n--------------AA index cols:' , X_aaindex_Fnum
|
||||||
|
|
||||||
|
, '\n================================================================'
|
||||||
|
|
||||||
|
, '\n\nTotal Genomic features (n):' , len(X_genomicFN)
|
||||||
|
, '\n--------MAF+OR cols:' , len(X_gn_mafor_Fnum)
|
||||||
|
, '\n--------------MAF+OR colnames:' , X_gn_mafor_Fnum
|
||||||
|
|
||||||
|
, '\n--------Lineage cols:' , len(X_gn_linegae_Fnum)
|
||||||
|
, '\n--------------Lineage cols:' , X_gn_linegae_Fnum
|
||||||
|
|
||||||
|
, '\n--------Other cols:' , len(X_gn_Fcat)
|
||||||
|
, '\n--------------Other cols:' , X_gn_Fcat
|
||||||
|
|
||||||
|
, '\n================================================================')
|
||||||
|
|
||||||
|
# Sanity check
|
||||||
|
if ( len(X.columns) == len(X_evolFN) + len(X_structural_FN) + len(X_genomicFN)):
|
||||||
print('\nPass: No. of features match')
|
print('\nPass: No. of features match')
|
||||||
else:
|
else:
|
||||||
sys.exit('\nFail: Count of feature mismatch')
|
print('\nFail: Count of feature mismatch'
|
||||||
|
, '\nExpected:', len(X_evolFN) + len(X_structural_FN) + len(X_genomicFN)
|
||||||
|
, '\nGot:', len(X.columns))
|
||||||
|
sys.exit()
|
||||||
|
|
||||||
print('\n#####################################################################\n')
|
print('\n#####################################################################\n')
|
||||||
|
|
||||||
|
@ -108,7 +126,7 @@ print('\n#####################################################################\n
|
||||||
# #==================
|
# #==================
|
||||||
# # Baseline models
|
# # Baseline models
|
||||||
# #==================
|
# #==================
|
||||||
# mm_skf_scoresD = MultModelsCl(input_df = X
|
# mm_skf_scoresD = MultModelsCl_dissected(input_df = X
|
||||||
# , target = y
|
# , target = y
|
||||||
# , var_type = 'mixed'
|
# , var_type = 'mixed'
|
||||||
# , skf_cv = skf_cv
|
# , skf_cv = skf_cv
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue