added cm_datai.py to get data for cm model for running fs later
This commit is contained in:
parent
b2d0b827ad
commit
e5f882841e
1 changed files with 136 additions and 0 deletions
136
scripts/ml/combined_model/cm_datai.py
Normal file
136
scripts/ml/combined_model/cm_datai.py
Normal file
|
@ -0,0 +1,136 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
"""
|
||||||
|
Created on Wed Jun 29 19:44:06 2022
|
||||||
|
|
||||||
|
@author: tanu
|
||||||
|
"""
|
||||||
|
import sys, os
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
import re
|
||||||
|
from copy import deepcopy
|
||||||
|
from sklearn import linear_model
|
||||||
|
from sklearn import datasets
|
||||||
|
from collections import Counter
|
||||||
|
###############################################################################
|
||||||
|
homedir = os.path.expanduser("~")
|
||||||
|
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
|
||||||
|
sys.path
|
||||||
|
###############################################################################
|
||||||
|
outdir = homedir + '/git/LSHTM_ML/output/combined/'
|
||||||
|
|
||||||
|
#====================
|
||||||
|
# Import ML functions
|
||||||
|
#====================
|
||||||
|
from ml_data_combined import *
|
||||||
|
from MultClfs_logo_skf import *
|
||||||
|
#from GetMLData import *
|
||||||
|
#from SplitTTS import *
|
||||||
|
|
||||||
|
skf_cv = StratifiedKFold(n_splits = 10 , shuffle = True, random_state = 42)
|
||||||
|
|
||||||
|
#logo = LeaveOneGroupOut()
|
||||||
|
|
||||||
|
########################################################################
|
||||||
|
# COMPLETE data: No tts_split
|
||||||
|
########################################################################
|
||||||
|
#%%
|
||||||
|
def CMLogoData(cm_input_df = pd.DataFrame()
|
||||||
|
, all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"]
|
||||||
|
, bts_genes = ["embb", "katg"
|
||||||
|
, "rpob", "pnca", "gid"
|
||||||
|
]
|
||||||
|
, cols_to_drop = ['dst', 'dst_mode', 'gene_name']
|
||||||
|
, target_var = 'dst_mode'
|
||||||
|
, gene_group = 'gene_name'
|
||||||
|
, std_gene_omit = []
|
||||||
|
):
|
||||||
|
|
||||||
|
cm_dataD = {}
|
||||||
|
for bts_gene in bts_genes:
|
||||||
|
print('\n BTS gene:', bts_gene)
|
||||||
|
|
||||||
|
if not std_gene_omit:
|
||||||
|
training_genesL = ['alr']
|
||||||
|
else:
|
||||||
|
training_genesL = []
|
||||||
|
|
||||||
|
tr_gene_omit = std_gene_omit + [bts_gene]
|
||||||
|
n_tr_genes = (len(bts_genes) - (len(std_gene_omit)))
|
||||||
|
#n_total_genes = (len(bts_genes) - len(std_gene_omit))
|
||||||
|
n_total_genes = len(all_genes)
|
||||||
|
|
||||||
|
training_genesL = training_genesL + list(set(bts_genes) - set(tr_gene_omit))
|
||||||
|
#training_genesL = [element for element in bts_genes if element not in tr_gene_omit]
|
||||||
|
|
||||||
|
print('\nTotal genes: ', n_total_genes
|
||||||
|
,'\nTraining on:', n_tr_genes
|
||||||
|
,'\nTraining on genes:', training_genesL
|
||||||
|
, '\nOmitted genes:', tr_gene_omit
|
||||||
|
, '\nBlind test gene:', bts_gene)
|
||||||
|
|
||||||
|
tts_split_type = "logo_skf_BT_" + bts_gene
|
||||||
|
|
||||||
|
outFile = outdir + str(n_tr_genes+1) + "genes_" + tts_split_type + ".csv"
|
||||||
|
|
||||||
|
print(outFile)
|
||||||
|
|
||||||
|
bts_geneD = {}
|
||||||
|
#-------
|
||||||
|
# training
|
||||||
|
#------
|
||||||
|
cm_training_df = cm_input_df[~cm_input_df['gene_name'].isin(tr_gene_omit)]
|
||||||
|
|
||||||
|
cm_X = cm_training_df.drop(cols_to_drop, axis=1, inplace=False)
|
||||||
|
#cm_y = cm_training_df.loc[:,'dst_mode']
|
||||||
|
cm_y = cm_training_df.loc[:, target_var]
|
||||||
|
|
||||||
|
gene_group = cm_training_df.loc[:,'gene_name']
|
||||||
|
|
||||||
|
print('\nTraining data dim:', cm_X.shape
|
||||||
|
, '\nTraining Target dim:', cm_y.shape)
|
||||||
|
|
||||||
|
if all(cm_X.columns.isin(cols_to_drop) == False):
|
||||||
|
print('\nChecked training df does NOT have Target var')
|
||||||
|
else:
|
||||||
|
sys.exit('\nFAIL: training data contains Target var')
|
||||||
|
|
||||||
|
#---------------
|
||||||
|
# BTS: genes
|
||||||
|
#---------------
|
||||||
|
cm_test_df = cm_input_df[cm_input_df['gene_name'].isin([bts_gene])]
|
||||||
|
|
||||||
|
cm_bts_X = cm_test_df.drop(cols_to_drop, axis = 1, inplace = False)
|
||||||
|
#cm_bts_y = cm_test_df.loc[:, 'dst_mode']
|
||||||
|
cm_bts_y = cm_test_df.loc[:, target_var]
|
||||||
|
|
||||||
|
print('\nTEST data dim:', cm_bts_X.shape
|
||||||
|
, '\nTEST Target dim:', cm_bts_y.shape)
|
||||||
|
|
||||||
|
|
||||||
|
bts_geneD = {'cm_X' : cm_X
|
||||||
|
, 'cm_y' : cm_y
|
||||||
|
, 'cm_bts_X': cm_bts_X
|
||||||
|
, 'cm_bts_y': cm_bts_y}
|
||||||
|
|
||||||
|
cm_dataD[bts_gene] = bts_geneD
|
||||||
|
|
||||||
|
return(cm_dataD)
|
||||||
|
|
||||||
|
#%%
|
||||||
|
df_complete_6g = CMLogoData(cm_input_df = combined_df, std_gene_omit=[] )
|
||||||
|
df_complete_5g = CMLogoData(cm_input_df = combined_df, std_gene_omit=['alr'])
|
||||||
|
# checks
|
||||||
|
|
||||||
|
len(df_complete_6g['embb']['cm_X'])
|
||||||
|
#len(df_complete_6g['embb']['cm_y'])
|
||||||
|
|
||||||
|
len(df_complete_5g['embb']['cm_X'])
|
||||||
|
#len(df_complete_5g['embb']['cm_y'])
|
||||||
|
|
||||||
|
df_actual_6g = CMLogoData(cm_input_df = combined_df_actual, std_gene_omit=[] )
|
||||||
|
df_actual_5g = CMLogoData(cm_input_df = combined_df_actual, std_gene_omit=['alr'])
|
||||||
|
|
||||||
|
len(df_actual_6g['embb']['cm_X'])
|
||||||
|
len(df_actual_5g['embb']['cm_X'])
|
Loading…
Add table
Add a link
Reference in a new issue