playing with dm_om (other)plots data and graph on gid branch

This commit is contained in:
Tanushree Tunstall 2021-08-26 16:35:46 +01:00
parent 1e3670f935
commit e36e7736db
4 changed files with 502 additions and 410 deletions

View file

@ -32,7 +32,8 @@ import_dirs <- function(drug_name, gene_name) {
#=============================== #===============================
# mcsm ligand distance cut off # mcsm ligand distance cut off
#=============================== #===============================
#mcsm_lig_cutoff <<- 10 LigDist_colname <<- "ligand_distance"
LigDist_cutoff <<- 10
#================== #==================
# Angstroms symbol # Angstroms symbol

View file

@ -25,8 +25,8 @@ source("../functions/bp_subcolours.R")
# variables for lig # variables for lig
#==================== #====================
LigDist_colname = "ligand_distance" #LigDist_colname = "ligand_distance"
LigDist_cutoff = 10 #LigDist_cutoff = 10
#=========== #===========
# input # input
@ -56,8 +56,13 @@ pd_df = plotting_data(mcsm_df
my_df = pd_df[[1]] my_df = pd_df[[1]]
my_df_u = pd_df[[2]] # this forms one of the input for combining_dfs_plotting() my_df_u = pd_df[[2]] # this forms one of the input for combining_dfs_plotting()
my_df_u_lig = pd_df[[3]]
dup_muts = pd_df[[4]] max_ang <- round(max(my_df_u[LigDist_colname]))
min_ang <- round(min(my_df_u[LigDist_colname]))
cat("\nLigand distance cut off, colname:", LigDist_colname
, "\nThe max distance", gene, "structure df" , ":", max_ang, "\u212b"
, "\nThe min distance", gene, "structure df" , ":", min_ang, "\u212b")
#-------------------------------- #--------------------------------
# call: combining_dfs_plotting() # call: combining_dfs_plotting()
@ -83,12 +88,20 @@ all_plot_dfs = combining_dfs_plotting(my_df_u
merged_df2 = all_plot_dfs[[1]] merged_df2 = all_plot_dfs[[1]]
merged_df3 = all_plot_dfs[[2]] merged_df3 = all_plot_dfs[[2]]
merged_df2_comp = all_plot_dfs[[3]] #======================================================================
merged_df3_comp = all_plot_dfs[[4]] # read other files
merged_df2_lig = all_plot_dfs[[5]] infilename_dynamut = paste0("~/git/Data/", drug, "/output/dynamut_results/", gene
merged_df3_lig = all_plot_dfs[[6]] , "_complex_dynamut_norm.csv")
merged_df2_comp_lig = all_plot_dfs[[7]]
merged_df3_comp_lig = all_plot_dfs[[8]] infilename_dynamut2 = paste0("~/git/Data/", drug, "/output/dynamut_results/dynamut2/", gene
, "_complex_dynamut2_norm.csv")
infilename_mcsm_na = paste0("~/git/Data/", drug, "/output/mcsm_na_results/", gene
, "_complex_mcsm_na_norm.csv")
dynamut_df = read.csv(infilename_dynamut)
dynamut2_df = read.csv(infilename_dynamut2)
mcsm_na_df = read.csv(infilename_mcsm_na)
#################################################################### ####################################################################
# Data for subcols barplot (~heatmpa) # Data for subcols barplot (~heatmpa)
@ -168,61 +181,6 @@ subcolsR_ps <- ColourPalleteMulti(subcols_df_ps, "duet_outcome", "my_grp_r")
print(paste0("Colour palette generated for my_grp: ", length(subcols_ps), " colours")) print(paste0("Colour palette generated for my_grp: ", length(subcols_ps), " colours"))
print(paste0("Colour palette generated for my_grp_r: ", length(subcolsR_ps), " colours")) print(paste0("Colour palette generated for my_grp_r: ", length(subcolsR_ps), " colours"))
#=======================
# Data for sub colours
# barplot: LIG
#=======================
cat("\nNo. of cols to select:", length(cols_to_select))
subcols_df_lig = merged_df3_lig[, cols_to_select]
cat("\nNo of unique positions for LIG:"
, length(unique(subcols_df_lig$position)))
# should be a factor
if (is.factor(subcols_df_lig$ligand_outcome)){
cat("\nLigand_outcome is factor")
table(subcols_df_lig$ligand_outcome)
}else{
cat("\nConverting ligand_outcome to factor")
subcols_df_lig$ligand_outcome = as.factor(subcols_df_lig$ligand_outcome)
table(subcols_df_lig$ligand_outcome)
}
# should be -1 and 1
min(subcols_df_lig$affinity_scaled)
max(subcols_df_lig$affinity_scaled)
tapply(subcols_df_lig$affinity_scaled, subcols_df_lig$ligand_outcome, min)
tapply(subcols_df_lig$affinity_scaled, subcols_df_lig$ligand_outcome, max)
# check unique values in normalised data
cat("\nNo. of unique values in affinity scaled, no rounding:"
, length(unique(subcols_df_lig$affinity_scaled)))
# No rounding
my_grp_lig = subcols_df_lig$affinity_scaled; length(my_grp_lig)
# Add rounding is to be used
n = 3
subcols_df_lig$affinity_scaledR = round(subcols_df_lig$affinity_scaled, n)
cat("\nNo. of unique values in duet scaled", n, "places rounding:"
, length(unique(subcols_df_lig$affinity_scaledR)))
my_grp_lig_r = subcols_df_lig$affinity_scaledR # rounding
# Add grp cols
subcols_df_lig$group_lig <- paste0(subcols_df_lig$ligand_outcome, "_", my_grp_lig, sep = "")
subcols_df_lig$group_ligR <- paste0(subcols_df_lig$ligand_outcome, "_", my_grp_lig_r, sep = "")
# Call the function to create the palette based on the group defined above
subcols_lig <- ColourPalleteMulti(subcols_df_lig, "ligand_outcome", "my_grp_lig")
subcolsR_lig <- ColourPalleteMulti(subcols_df_lig, "ligand_outcome", "my_grp_lig_r")
print(paste0("Colour palette generated for my_grp: ", length(subcols_lig), " colours"))
print(paste0("Colour palette generated for my_grp_r: ", length(subcolsR_lig), " colours"))
#################################################################### ####################################################################
# Data for logoplots # Data for logoplots
#################################################################### ####################################################################
@ -472,113 +430,6 @@ if (nrow(corr_ps_df3) == nrow(merged_df3) && nrow(merged_df3_comp) == check1) {
, "\nGot: ", check1) , "\nGot: ", check1)
} }
#=================================
# Data for Correlation plots: LIG
#=================================
cat("\n=========================================="
, "\nCORR PLOTS data: LIG"
, "\n===========================================")
df_lig = merged_df2_lig
table(df_lig$ligand_outcome)
#--------------------
# adding log cols : NEW UNCOMMENT
#--------------------
#df_lig$log10_or_mychisq = log10(df_lig$or_mychisq)
#df_lig$neglog_pval_fisher = -log10(df_lig$pval_fisher)
##df_lig$log10_or_kin = log10(df_lig$or_kin)
##df_lig$neglog_pwald_kin = -log10(df_lig$pwald_kin)
#----------------------------
# columns for corr plots:PS
#----------------------------
# subset data to generate pairwise correlations
cols_to_select = c("mutationinformation"
, "affinity_scaled"
#, "mutation_info_labels"
, "asa"
, "rsa"
, "rd_values"
, "kd_values"
, "log10_or_mychisq"
, "neglog_pval_fisher"
##, "or_kin"
##, "neglog_pwald_kin"
, "af"
##, "af_kin"
, "ligand_outcome"
, drug)
corr_data_lig = df_lig[, cols_to_select]
dim(corr_data_lig)
#--------------------------------------
# assign nice colnames (for display)
#--------------------------------------
my_corr_colnames = c("Mutation"
, "Ligand Affinity"
#, "Mutation class"
, "ASA"
, "RSA"
, "RD"
, "KD"
, "Log (OR)"
, "-Log (P)"
##, "Adjusted (OR)"
##, "-Log (P wald)"
, "MAF"
##, "MAF_kin"
, "ligand_outcome"
, drug)
length(my_corr_colnames)
colnames(corr_data_lig)
colnames(corr_data_lig) <- my_corr_colnames
colnames(corr_data_lig)
start = 1
end = which(colnames(corr_data_lig) == drug); end # should be the last column
offset = 1
#=============================
# Corr data for plots: LIG
# big_df lig: ~ merged_df2_lig
#==============================
#corr_lig_df2 = corr_data_lig[start:(end-offset)] # without drug
corr_lig_df2 = corr_data_lig[start:end]
head(corr_lig_df2)
#=============================
# Corr data for plots: LIG
# short_df lig: ~ merged_df3_lig
#==============================
corr_lig_df3 = corr_lig_df2[!duplicated(corr_lig_df2$Mutation),]
na_or_lig = sum(is.na(corr_lig_df3$`Log (OR)`))
check1_lig = nrow(corr_lig_df3) - na_or_lig
if (nrow(corr_lig_df3) == nrow(merged_df3_lig) && nrow(merged_df3_comp_lig) == check1_lig) {
cat( "\nPASS: No. of rows for corr_lig_df3 match"
, "\nPASS: No. of OR values checked: " , check1_lig)
} else {
cat("\nFAIL: Numbers mismatch:"
, "\nExpected nrows: ", nrow(merged_df3_lig)
, "\nGot: ", nrow(corr_ps_df3_lig)
, "\nExpected OR values: ", nrow(merged_df3_comp_lig)
, "\nGot: ", check1_lig)
}
# remove unnecessary columns
identical(corr_data_lig, corr_lig_df2)
identical(corr_data_ps, corr_ps_df2)
#rm(df_ps, df_lig, corr_data_ps, corr_data_lig)
######################################################################## ########################################################################
# End of script # End of script
######################################################################## ########################################################################

View file

@ -45,12 +45,15 @@ my_pts = 22 # plot title size
#=========== #===========
# Plot1: PS # Plot1: PS
#=========== #===========
my_stat_ps = compare_means(param_value~mutation_info, group.by = "param_type" # my_stat_ps = compare_means(param_value~mutation_info
, data = df_lf_ps, paired = FALSE, p.adjust.method = "BH") # , group.by = "param_type"
# , data = df_lf_ps
# , paired = FALSE
# , p.adjust.method = "BH")
y_value = "param_value" y_value = "param_value"
p1 = ggplot(df_lf_ps, aes(x = mutation_info p1 = ggplot(lf_duet, aes(x = mutation_info
, y = eval(parse(text=y_value)) )) + , y = eval(parse(text=y_value)) )) +
facet_wrap(~ param_type facet_wrap(~ param_type
, nrow = 1 , nrow = 1
@ -61,7 +64,7 @@ p1 = ggplot(df_lf_ps, aes(x = mutation_info
geom_point(position = position_jitterdodge(dodge.width=0.01) geom_point(position = position_jitterdodge(dodge.width=0.01)
, alpha = 0.5 , alpha = 0.5
, show.legend = FALSE , show.legend = FALSE
, aes(colour = factor(duet_outcome))) + , aes(colour = duet_outcome)) +
theme(axis.text.x = element_text(size = my_ats) theme(axis.text.x = element_text(size = my_ats)
, axis.text.y = element_text(size = my_ats , axis.text.y = element_text(size = my_ats
, angle = 0 , angle = 0

View file

@ -5,21 +5,18 @@
######################################################### #########################################################
#======================================================================= #=======================================================================
# working dir and loading libraries # working dir and loading libraries
getwd() # getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting") # setwd("~/git/LSHTM_analysis/scripts/plotting")
getwd() # getwd()
#source("Header_TT.R") # make cmd
library(ggplot2) # globals
library(data.table) # drug = "streptomycin"
library(dplyr) # gene = "gid"
library(tidyverse)
source("combining_dfs_plotting.R")
rm(merged_df2, merged_df2_comp, merged_df2_lig, merged_df2_comp_lig
, merged_df3_comp, merged_df3_comp_lig
, my_df_u, my_df_u_lig)
#source("get_plotting_dfs.R")
#=======================================================================
# MOVE TO COMBINE or singular file for deepddg
cols_to_select = c("mutation", "mutationinformation" cols_to_select = c("mutation", "mutationinformation"
, "wild_type", "position", "mutant_type" , "wild_type", "position", "mutant_type"
@ -27,275 +24,515 @@ cols_to_select = c("mutation", "mutationinformation"
merged_df3_short = merged_df3[, cols_to_select] merged_df3_short = merged_df3[, cols_to_select]
# write merged_df3 to generate structural figure infilename_mcsm_f_snps <- paste0("~/git/Data/", drug, "/output/", gene
write.csv(merged_df3_short, "merged_df3_short.csv") , "_mcsm_formatted_snps.csv")
mcsm_f_snps<- read.csv(infilename_mcsm_f_snps, header = F)
names(mcsm_f_snps) <- "mutationinformation"
# write merged_df3 to generate structural figure on chimera
#write.csv(merged_df3_short, "merged_df3_short.csv")
#======================================================================== #========================================================================
#%%%%%%%%%%%%%%%%%%% # MOVE TO COMBINE or singular file for deepddg
# REASSIGNMENT: PS
#%%%%%%%%%%%%%%%%%%%%
df_ps = merged_df3
#============================ #============================
# adding foldx scaled values # adding deepddg scaled values
# scale data b/w -1 and 1 # scale data b/w -1 and 1
#============================ #============================
n = which(colnames(df_ps) == "ddg"); n n = which(colnames(merged_df3) == "deepddg"); n
my_min = min(df_ps[,n]); my_min my_min = min(merged_df3[,n]); my_min
my_max = max(df_ps[,n]); my_max my_max = max(merged_df3[,n]); my_max
df_ps$foldx_scaled = ifelse(df_ps[,n] < 0 merged_df3$deepddg_scaled = ifelse(merged_df3[,n] < 0
, df_ps[,n]/abs(my_min) , merged_df3[,n]/abs(my_min)
, df_ps[,n]/my_max) , merged_df3[,n]/my_max)
# sanity check # sanity check
my_min = min(df_ps$foldx_scaled); my_min my_min = min(merged_df3$deepddg_scaled); my_min
my_max = max(df_ps$foldx_scaled); my_max my_max = max(merged_df3$deepddg_scaled); my_max
if (my_min == -1 && my_max == 1){ if (my_min == -1 && my_max == 1){
cat("PASS: foldx ddg successfully scaled b/w -1 and 1" cat("PASS: DeepDDG successfully scaled b/w -1 and 1"
, "\nProceeding with assigning foldx outcome category") #, "\nProceeding with assigning deep outcome category")
, "\n")
}else{ }else{
cat("FAIL: could not scale foldx ddg values" cat("FAIL: could not scale DeepDDG ddg values"
, "Aborting!") , "Aborting!")
} }
#================================ #========================================================================
# adding foldx outcome category # cols to select
# ddg<0 = "Stabilising" (-ve)
#=================================
c1 = table(df_ps$ddg < 0) cols_mcsm_df <- merged_df3[, c("mutationinformation", "mutation"
df_ps$foldx_outcome = ifelse(df_ps$ddg < 0, "Stabilising", "Destabilising") , "mutation_info", "position"
c2 = table(df_ps$ddg < 0) , LigDist_colname
, "duet_stability_change", "duet_scaled", "duet_outcome"
, "ligand_affinity_change", "affinity_scaled", "ligand_outcome"
, "ddg_foldx", "foldx_scaled", "foldx_outcome"
, "deepddg", "deepddg_scaled", "deepddg_outcome"
, "asa", "rsa"
, "rd_values", "kd_values"
, "log10_or_mychisq", "neglog_pval_fisher", "af")]
cols_mcsm_na_df <- mcsm_na_df[, c("mutationinformation"
, "mcsm_na_affinity", "mcsm_na_scaled"
, "mcsm_na_outcome")]
# entire dynamut_df
cols_dynamut2_df <- dynamut2_df[, c("mutationinformation"
, "ddg_dynamut2", "ddg_dynamut2_scaled"
, "ddg_dynamut2_outcome")]
n_comb_cols = length(cols_mcsm_df) + length(cols_mcsm_na_df) +
length(dynamut_df) + length(cols_dynamut2_df); n_comb_cols
i1<- intersect(names(cols_mcsm_df), names(cols_mcsm_na_df))
i2<- intersect(names(dynamut_df), names(cols_dynamut2_df))
merging_cols <- intersect(i1, i2)
cat("\nmerging_cols:", merging_cols)
if (merging_cols == "mutationinformation") {
cat("\nStage 1: Found common col between dfs, checking values in it...")
c1 <- all(mcsm_f_snps[[merging_cols]]%in%cols_mcsm_df[[merging_cols]])
c2 <- all(mcsm_f_snps[[merging_cols]]%in%cols_mcsm_na_df[[merging_cols]])
c3 <- all(mcsm_f_snps[[merging_cols]]%in%dynamut_df[[merging_cols]])
c4 <- all(mcsm_f_snps[[merging_cols]]%in%cols_dynamut2_df[[merging_cols]])
cols_check <- c(c1, c2, c3, c4)
expected_cols = n_comb_cols - ( length(cols_check) - 1)
if (all(cols_check)){
cat("\nStage 2:Proceeding with merging dfs:\n")
comb_df <- Reduce(inner_join, list(cols_mcsm_df
, cols_mcsm_na_df
, dynamut_df
, cols_dynamut2_df))
comb_df_s = arrange(comb_df, position)
# if ( nrow(comb_df_s) == nrow(mcsm_f_snps) && ncol(comb_df_s) == expected_cols) {
# cat("\Stage3, PASS: dfs merged sucessfully"
# , "\nnrow of merged_df: ", nrow(comb_df_s)
# , "\nncol of merged_df:", ncol(comb_df_s))
# }
if ( all(c1 == c2) ){
cat("PASS: foldx outcome successfully created")
}else{
cat("FAIL: foldx outcome could not be created. Aborting!")
exit()
} }
}
names(comb_df_s)
#======================================================================= #=======================================================================
# name tidying fact_cols = colnames(comb_df_s)[grepl( "_outcome|_info", colnames(comb_df_s) )]
df_ps$mutation_info = as.factor(df_ps$mutation_info) fact_cols
df_ps$duet_outcome = as.factor(df_ps$duet_outcome) lapply(comb_df_s[, fact_cols], class)
df_ps$foldx_outcome = as.factor(df_ps$foldx_outcome) comb_df_s[,fact_cols] <- lapply(comb_df_s[,cols],as.factor)
df_ps$ligand_outcome = as.factor(df_ps$ligand_outcome)
# check if (any(lapply(comb_df_s[, fact_cols], class) == "character")){
table(df_ps$mutation_info) cat("\nChanging cols to factor")
comb_df_s[, fact_cols] <- lapply(comb_df_s[, fact_cols],as.factor)
if (all(lapply(comb_df_s[, fact_cols], class) == "factor")){
cat("\nSuccessful: cols changed to factor")
}
}
lapply(comb_df_s[, fact_cols], class)
#=======================================================================
table(comb_df_s$mutation_info)
# further checks to make sure dr and other muts are indeed unique # further checks to make sure dr and other muts are indeed unique
dr_muts = df_ps[df_ps$mutation_info == dr_muts_col,] dr_muts = comb_df_s[comb_df_s$mutation_info == dr_muts_col,]
dr_muts_names = unique(dr_muts$mutation) dr_muts_names = unique(dr_muts$mutation)
other_muts = df_ps[df_ps$mutation_info == other_muts_col,] other_muts = comb_df_s[comb_df_s$mutation_info == other_muts_col,]
other_muts_names = unique(other_muts$mutation) other_muts_names = unique(other_muts$mutation)
if ( table(dr_muts_names%in%other_muts_names)[[1]] == length(dr_muts_names) && if ( table(dr_muts_names%in%other_muts_names)[[1]] == length(dr_muts_names) &&
table(other_muts_names%in%dr_muts_names)[[1]] == length(other_muts_names) ){ table(other_muts_names%in%dr_muts_names)[[1]] == length(other_muts_names) ){
cat("PASS: dr and other muts are indeed unique") cat("PASS: dr and other muts are indeed unique")
}else{ }else{
cat("FAIL: dr adn others muts are NOT unique!") cat("FAIL: dr and others muts are NOT unique!")
quit() quit()
} }
# pretty display names i.e. labels to reduce major code duplication later
foo_cnames = data.frame(colnames(comb_df_s))
names(foo_cnames) <- "old_name"
#%%%%%%%%%%%%%%%%%%% stability_suffix <- paste0(delta_symbol, delta_symbol, "G")
# REASSIGNMENT: LIG flexibility_suffix <- paste0(delta_symbol, delta_symbol, "S")
#%%%%%%%%%%%%%%%%%%%%
df_lig = merged_df3_lig lig_dn = paste0("Ligand distance (", angstroms_symbol, ")"); lig_dn
duet_dn = paste0("DUET ", stability_suffix); duet_dn
foldx_dn = paste0("FoldX ", stability_suffix); foldx_dn
deepddg_dn = paste0("Deepddg " , stability_suffix); deepddg_dn
mcsm_na_dn = paste0("mCSM-NA affinity ", stability_suffix); mcsm_na_dn
dynamut_dn = paste0("Dynamut ", stability_suffix); dynamut_dn
dynamut2_dn = paste0("Dynamut2 " , stability_suffix); dynamut2_dn
encom_ddg_dn = paste0("EnCOM " , stability_suffix); encom_ddg_dn
encom_dds_dn = paste0("EnCOM " , flexibility_suffix ); encom_dds_dn
sdm_dn = paste0("SDM " , stability_suffix); sdm_dn
mcsm_dn = paste0("mCSM " , stability_suffix ); mcsm_dn
# name tidying # Change colnames of some columns using datatable
df_lig$mutation_info = as.factor(df_lig$mutation_info) comb_df_sl = comb_df_s
df_lig$duet_outcome = as.factor(df_lig$duet_outcome) names(comb_df_sl)
#df_lig$ligand_outcome = as.factor(df_lig$ligand_outcome)
# check
table(df_lig$mutation_info)
#========================================================================
#===========
# Data: ps
#===========
# keep similar dtypes cols together
cols_to_select_ps = c("mutationinformation", "mutation", "position", "mutation_info"
, "duet_outcome"
setnames(comb_df_sl
, old = c("asa", "rsa", "rd_values", "kd_values"
, "log10_or_mychisq", "neglog_pval_fisher", "af"
, LigDist_colname
, "duet_scaled" , "duet_scaled"
, "ligand_distance" , "foldx_scaled"
, "asa" , "deepddg_scaled"
, "rsa" , "mcsm_na_scaled"
, "rd_values" , "ddg_dynamut_scaled"
, "kd_values") , "ddg_dynamut2_scaled"
, "ddg_encom_scaled"
, "dds_encom_scaled"
, "ddg_sdm"
, "ddg_mcsm")
df_wf_ps = df_ps[, cols_to_select_ps] , new = c("ASA", "RSA", "RD", "KD"
, "Log10 (OR)", "-Log (P)", "MAF"
, lig_dn
, duet_dn
, foldx_dn
, deepddg_dn
, mcsm_na_dn
, dynamut_dn
, dynamut2_dn
, encom_ddg_dn
, encom_dds_dn
, sdm_dn
, mcsm_dn)
)
pivot_cols_ps = cols_to_select_ps[1:5]; pivot_cols_ps foo_cnames <- cbind(foo_cnames, colnames(comb_df_sl))
expected_rows_lf_ps = nrow(df_wf_ps) * (length(df_wf_ps) - length(pivot_cols_ps)) # some more pretty labels
expected_rows_lf_ps table(comb_df_sl$mutation_info)
levels(comb_df_sl$mutation_info)[levels(comb_df_sl$mutation_info)==dr_muts_col] <- "DM"
levels(comb_df_sl$mutation_info)[levels(comb_df_sl$mutation_info)==other_muts_col] <- "OM"
table(comb_df_sl$mutation_info)
#######################################################################
#======================
# Selecting dfs
# with appropriate cols
#=======================
static_cols_start = c("mutationinformation"
, "position"
, "mutation"
, "mutation_info")
static_cols_end = c(lig_dn
, "ASA"
, "RSA"
, "RD"
, "KD")
# ordering is important!
#########################################################################
#==============
# DUET: LF
#==============
cols_to_select_duet = c(static_cols_start, c("duet_outcome", duet_dn), static_cols_end)
wf_duet = comb_df_sl[, cols_to_select_duet]
#pivot_cols_ps = cols_to_select_ps[1:5]; pivot_cols_ps
pivot_cols_duet = cols_to_select_duet[1: (length(static_cols_start) + 1)]; pivot_cols_duet
expected_rows_lf = nrow(wf_duet) * (length(wf_duet) - length(pivot_cols_duet))
expected_rows_lf
# LF data: duet # LF data: duet
df_lf_ps = gather(df_wf_ps, param_type, param_value, duet_scaled:kd_values, factor_key=TRUE) lf_duet = gather(wf_duet
, key = param_type
, value = param_value
, all_of(duet_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(df_lf_ps) == expected_rows_lf_ps){ if (nrow(lf_duet) == expected_rows_lf){
cat("PASS: long format data created for duet") cat("\nPASS: long format data created for ", duet_dn)
}else{ }else{
cat("FAIL: long format data could not be created for duet") cat("\nFAIL: long format data could not be created for duet")
exit() quit()
} }
str(df_wf_ps)
str(df_lf_ps)
# assign pretty labels: param_type
levels(df_lf_ps$param_type); table(df_lf_ps$param_type)
ligand_dist_colname = paste0("Distance to ligand (", angstroms_symbol, ")")
ligand_dist_colname
duet_stability_name = paste0(delta_symbol, delta_symbol, "G")
duet_stability_name
#levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="duet_scaled"] <- "Stability"
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="duet_scaled"] <- duet_stability_name
#levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="ligand_distance"] <- "Ligand Distance"
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="ligand_distance"] <- ligand_dist_colname
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="asa"] <- "ASA"
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="rsa"] <- "RSA"
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="rd_values"] <- "RD"
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="kd_values"] <- "KD"
# check
levels(df_lf_ps$param_type); table(df_lf_ps$param_type)
# assign pretty labels: mutation_info
levels(df_lf_ps$mutation_info); table(df_lf_ps$mutation_info)
sum(table(df_lf_ps$mutation_info)) == nrow(df_lf_ps)
levels(df_lf_ps$mutation_info)[levels(df_lf_ps$mutation_info)==dr_muts_col] <- "DM"
levels(df_lf_ps$mutation_info)[levels(df_lf_ps$mutation_info)==other_muts_col] <- "OM"
# check
levels(df_lf_ps$mutation_info); table(df_lf_ps$mutation_info)
############################################################################ ############################################################################
#==============
# FoldX: LF
#==============
cols_to_select_foldx= c(static_cols_start, c("foldx_outcome", foldx_dn), static_cols_end)
wf_foldx = comb_df_sl[, cols_to_select_foldx]
#=========== pivot_cols_foldx = cols_to_select_foldx[1: (length(static_cols_start) + 1)]; pivot_cols_foldx
# LF data: LIG
#===========
# keep similar dtypes cols together
cols_to_select_lig = c("mutationinformation", "mutation", "position", "mutation_info"
, "ligand_outcome"
, "affinity_scaled" expected_rows_lf = nrow(wf_foldx) * (length(wf_foldx) - length(pivot_cols_foldx))
#, "ligand_distance" expected_rows_lf
, "asa"
, "rsa"
, "rd_values"
, "kd_values")
df_wf_lig = df_lig[, cols_to_select_lig] # LF data: duet
print("TESTXXXXXXXXXXXXXXXXXXXXX---------------------->>>>")
lf_foldx <<- gather(wf_foldx
, key = param_type
, value = param_value
, all_of(foldx_dn):tail(static_cols_end,1)
, factor_key = TRUE)
pivot_cols_lig = cols_to_select_lig[1:5]; pivot_cols_lig if (nrow(lf_foldx) == expected_rows_lf){
cat("\nPASS: long format data created for ", foldx_dn)
expected_rows_lf_lig = nrow(df_wf_lig) * (length(df_wf_lig) - length(pivot_cols_lig))
expected_rows_lf_lig
# LF data: foldx
df_lf_lig = gather(df_wf_lig, param_type, param_value, affinity_scaled:kd_values, factor_key=TRUE)
if (nrow(df_lf_lig) == expected_rows_lf_lig){
cat("PASS: long format data created for foldx")
}else{ }else{
cat("FAIL: long format data could not be created for foldx") cat("\nFAIL: long format data could not be created for duet")
exit() quit()
} }
# assign pretty labels: param_type
levels(df_lf_lig$param_type); table(df_lf_lig$param_type)
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="affinity_scaled"] <- "Ligand Affinity"
#levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="ligand_distance"] <- "Ligand Distance"
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="asa"] <- "ASA"
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="rsa"] <- "RSA"
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="rd_values"] <- "RD"
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="kd_values"] <- "KD"
#check
levels(df_lf_lig$param_type); table(df_lf_lig$param_type)
# assign pretty labels: mutation_info
levels(df_lf_lig$mutation_info); table(df_lf_lig$mutation_info)
sum(table(df_lf_lig$mutation_info)) == nrow(df_lf_lig)
levels(df_lf_lig$mutation_info)[levels(df_lf_lig$mutation_info)==dr_muts_col] <- "DM"
levels(df_lf_lig$mutation_info)[levels(df_lf_lig$mutation_info)==other_muts_col] <- "OM"
# check
levels(df_lf_lig$mutation_info); table(df_lf_lig$mutation_info)
#############################################################################
#===========
# Data: foldx
#===========
# keep similar dtypes cols together
cols_to_select_foldx = c("mutationinformation", "mutation", "position", "mutation_info"
, "foldx_outcome"
, "foldx_scaled")
#, "ligand_distance"
#, "asa"
#, "rsa"
#, "rd_values"
#, "kd_values")
df_wf_foldx = df_ps[, cols_to_select_foldx]
pivot_cols_foldx = cols_to_select_foldx[1:5]; pivot_cols_foldx
expected_rows_lf_foldx = nrow(df_wf_foldx) * (length(df_wf_foldx) - length(pivot_cols_foldx))
expected_rows_lf_foldx
# LF data: foldx
df_lf_foldx = gather(df_wf_foldx, param_type, param_value, foldx_scaled, factor_key=TRUE)
if (nrow(df_lf_foldx) == expected_rows_lf_foldx){
cat("PASS: long format data created for foldx")
}else{
cat("FAIL: long format data could not be created for foldx")
exit()
}
foldx_stability_name = paste0(delta_symbol, delta_symbol, "G")
foldx_stability_name
# assign pretty labels: param type
levels(df_lf_foldx$param_type); table(df_lf_foldx$param_type)
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="foldx_scaled"] <- "Stability"
levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="foldx_scaled"] <- foldx_stability_name
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="ligand_distance"] <- "Ligand Distance"
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="asa"] <- "ASA"
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="rsa"] <- "RSA"
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="rd_values"] <- "RD"
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="kd_values"] <- "KD"
# check
levels(df_lf_foldx$param_type); table(df_lf_foldx$param_type)
# assign pretty labels: mutation_info
levels(df_lf_foldx$mutation_info); table(df_lf_foldx$mutation_info)
sum(table(df_lf_foldx$mutation_info)) == nrow(df_lf_foldx)
levels(df_lf_foldx$mutation_info)[levels(df_lf_foldx$mutation_info)==dr_muts_col] <- "DM"
levels(df_lf_foldx$mutation_info)[levels(df_lf_foldx$mutation_info)==other_muts_col] <- "OM"
# check
levels(df_lf_foldx$mutation_info); table(df_lf_foldx$mutation_info)
############################################################################ ############################################################################
#==============
# Deepddg: LF
#==============
cols_to_select_deepddg = c(static_cols_start, c("deepddg_outcome", deepddg_dn), static_cols_end)
wf_deepddg = comb_df_sl[, cols_to_select_deepddg]
# clear excess variables pivot_cols_deepddg = cols_to_select_deepddg[1: (length(static_cols_start) + 1)]; pivot_cols_deepddg
rm(cols_to_select_ps, cols_to_select_foldx, cols_to_select_lig
, pivot_cols_ps, pivot_cols_foldx, pivot_cols_lig expected_rows_lf = nrow(wf_deepddg) * (length(wf_deepddg) - length(pivot_cols_deepddg))
, expected_rows_lf_ps, expected_rows_lf_foldx, expected_rows_lf_lig expected_rows_lf
, my_max, my_min, na_count, na_count_df2, na_count_df3, dup_muts_nu
, c1, c2, n) # LF data: duet
lf_deepddg = gather(wf_deepddg
, key = param_type
, value = param_value
, all_of(deepddg_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(lf_deepddg) == expected_rows_lf){
cat("\nPASS: long format data created for ", deepddg_dn)
}else{
cat("\nFAIL: long format data could not be created for duet")
quit()
}
############################################################################
#==============
# mCSM-NA: LF
#==============
cols_to_select_mcsm_na = c(static_cols_start, c("mcsm_na_outcome", mcsm_na_dn), static_cols_end)
wf_mcsm_na = comb_df_sl[, cols_to_select_mcsm_na]
pivot_cols_mcsm_na = cols_to_select_mcsm_na[1: (length(static_cols_start) + 1)]; pivot_cols_mcsm_na
expected_rows_lf = nrow(wf_mcsm_na) * (length(wf_mcsm_na) - length(pivot_cols_mcsm_na))
expected_rows_lf
# LF data: duet
lf_mcsm_na = gather(wf_mcsm_na
, key = param_type
, value = param_value
, all_of(mcsm_na_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(lf_mcsm_na) == expected_rows_lf){
cat("\nPASS: long format data created for ", mcsm_na_dn)
}else{
cat("\nFAIL: long format data could not be created for duet")
quit()
}
############################################################################
#==============
# Dynamut: LF
#==============
cols_to_select_dynamut = c(static_cols_start, c("ddg_dynamut_outcome", dynamut_dn), static_cols_end)
wf_dynamut = comb_df_sl[, cols_to_select_dynamut]
pivot_cols_dynamut = cols_to_select_dynamut[1: (length(static_cols_start) + 1)]; pivot_cols_dynamut
expected_rows_lf = nrow(wf_dynamut) * (length(wf_dynamut) - length(pivot_cols_dynamut))
expected_rows_lf
# LF data: duet
lf_dynamut = gather(wf_dynamut
, key = param_type
, value = param_value
, all_of(dynamut_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(lf_dynamut) == expected_rows_lf){
cat("\nPASS: long format data created for ", dynamut_dn)
}else{
cat("\nFAIL: long format data could not be created for duet")
quit()
}
############################################################################
#==============
# Dynamut2: LF
#==============
cols_to_select_dynamut2 = c(static_cols_start, c("ddg_dynamut2_outcome", dynamut2_dn), static_cols_end)
wf_dynamut2 = comb_df_sl[, cols_to_select_dynamut2]
pivot_cols_dynamut2 = cols_to_select_dynamut2[1: (length(static_cols_start) + 1)]; pivot_cols_dynamut2
expected_rows_lf = nrow(wf_dynamut2) * (length(wf_dynamut2) - length(pivot_cols_dynamut2))
expected_rows_lf
# LF data: duet
lf_dynamut2 = gather(wf_dynamut2
, key = param_type
, value = param_value
, all_of(dynamut2_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(lf_dynamut2) == expected_rows_lf){
cat("\nPASS: long format data created for ", dynamut2_dn)
}else{
cat("\nFAIL: long format data could not be created for duet")
quit()
}
############################################################################
#==============
# EnCOM ddg: LF
#==============
cols_to_select_encomddg = c(static_cols_start, c("ddg_encom_outcome", encom_ddg_dn), static_cols_end)
wf_encomddg = comb_df_sl[, cols_to_select_encomddg]
pivot_cols_encomddg = cols_to_select_encomddg[1: (length(static_cols_start) + 1)]; pivot_cols_encomddg
expected_rows_lf = nrow(wf_encomddg ) * (length(wf_encomddg ) - length(pivot_cols_encomddg))
expected_rows_lf
# LF data: encomddg
lf_encomddg = gather(wf_encomddg
, key = param_type
, value = param_value
, all_of(encom_ddg_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(lf_encomddg) == expected_rows_lf){
cat("\nPASS: long format data created for ", encom_ddg_dn)
}else{
cat("\nFAIL: long format data could not be created for duet")
quit()
}
############################################################################
#==============
# EnCOM dds: LF
#==============
cols_to_select_encomdds = c(static_cols_start, c("dds_encom_outcome", encom_dds_dn), static_cols_end)
wf_encomdds = comb_df_sl[, cols_to_select_encomdds]
pivot_cols_encomdds = cols_to_select_encomdds[1: (length(static_cols_start) + 1)]; pivot_cols_encomdds
expected_rows_lf = nrow(wf_encomdds) * (length(wf_encomdds) - length(pivot_cols_encomdds))
expected_rows_lf
# LF data: encomddg
lf_encomdds = gather(wf_encomdds
, key = param_type
, value = param_value
, all_of(encom_dds_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(lf_encomdds) == expected_rows_lf){
cat("\nPASS: long format data created for", encom_dds_dn)
}else{
cat("\nFAIL: long format data could not be created for duet")
quit()
}
############################################################################
#==============
# SDM: LF
#==============
cols_to_select_sdm = c(static_cols_start, c("ddg_sdm_outcome", sdm_dn), static_cols_end)
wf_sdm = comb_df_sl[, cols_to_select_sdm]
pivot_cols_sdm = cols_to_select_sdm[1: (length(static_cols_start) + 1)]; pivot_cols_sdm
expected_rows_lf = nrow(wf_sdm) * (length(wf_sdm) - length(pivot_cols_sdm))
expected_rows_lf
# LF data: encomddg
lf_sdm = gather(wf_sdm
, key = param_type
, value = param_value
, all_of(sdm_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(lf_sdm) == expected_rows_lf){
cat("\nPASS: long format data created for", sdm_dn)
}else{
cat("\nFAIL: long format data could not be created for duet")
quit()
}
############################################################################
#==============
# mCSM: LF
#==============
cols_to_select_mcsm = c(static_cols_start, c("ddg_mcsm_outcome", mcsm_dn), static_cols_end)
wf_mcsm = comb_df_sl[, cols_to_select_mcsm]
pivot_cols_mcsm = cols_to_select_mcsm[1: (length(static_cols_start) + 1)]; pivot_cols_mcsm
expected_rows_lf = nrow(wf_mcsm) * (length(wf_mcsm) - length(pivot_cols_mcsm))
expected_rows_lf
# LF data: encomddg
lf_mcsm = gather(wf_mcsm
, key = param_type
, value = param_value
, all_of(mcsm_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(lf_mcsm) == expected_rows_lf){
cat("\nPASS: long format data created for", mcsm_dn)
}else{
cat("\nFAIL: long format data could not be created for duet")
quit()
}
############################################################################
# # clear excess variables
# rm(all_plot_dfs
# , cols_dynamut2_df
# , cols_mcsm_df
# , cols_mcsm_na_df
# , comb_df
# , corr_data_ps
# , corr_ps_df3
# , df_lf_ps
# , foo
# , foo_cnames
# , gene_metadata
# , logo_data
# , logo_data_or_mult
# , logo_data_plot
# , logo_data_plot_logor
# , logo_data_plot_or
# , my_data_snp
# , my_df
# , my_df_u
# , ols_mcsm_df
# , other_muts
# , pd_df
# , subcols_df_ps
# , tab_mt
# , wide_df_logor
# , wide_df_logor_m
# , wide_df_or
# , wide_df_or_mult
# , wt)
#
#
# rm(c3, c4, check1
# , cols_check
# , cols_to_select
# , cols_to_select_deepddg
# , cols_to_select_duet
# , cols_to_select_dynamut
# , cols_to_select_dynamut2
# , cols_to_select_encomddg
# , cols_to_select_encomdds
# , cols_to_select_mcsm
# , cols_to_select_mcsm_na
# , cols_to_select_sdm)