added FS to MultClfs.py and modified data for different splits for consistency

This commit is contained in:
Tanushree Tunstall 2022-06-24 20:35:53 +01:00
parent edb7aebd6a
commit e2bc384155
12 changed files with 1585 additions and 994 deletions

View file

@ -98,7 +98,7 @@ mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
jacc_score_fn = {'jcc': make_scorer(jaccard_score)} jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
############################################################################### ###############################################################################
def fsgs(input_df def fsgs_rfecv(input_df
, target , target
, param_gridLd = [{'fs__min_features_to_select' : [1]}] , param_gridLd = [{'fs__min_features_to_select' : [1]}]
, blind_test_df = pd.DataFrame() , blind_test_df = pd.DataFrame()

View file

@ -502,10 +502,11 @@ def ProcessMultModelsCl(inputD = {}):
# Combine WF+Metadata: Final output # Combine WF+Metadata: Final output
#------------------------------------- #-------------------------------------
# checking indices for the dfs to combine: # checking indices for the dfs to combine:
c1 = list(set(combined_baseline_wf.index)) c1L = list(set(combined_baseline_wf.index))
c2 = list(metaDF.index) c2L = list(metaDF.index)
if c1 == c2: #if set(c1L) == set(c2L):
if set(c1L) == set(c2L) and all(x in c2L for x in c1L) and all(x in c1L for x in c2L):
print('\nPASS: proceeding to merge metadata with CV and BT dfs') print('\nPASS: proceeding to merge metadata with CV and BT dfs')
combDF = pd.merge(combined_baseline_wf, metaDF, left_index = True, right_index = True) combDF = pd.merge(combined_baseline_wf, metaDF, left_index = True, right_index = True)
else: else:
@ -531,5 +532,302 @@ def ProcessMultModelsCl(inputD = {}):
return combDF return combDF
############################################################################### ###############################################################################
#%% Feature selection function ################################################
############################
# fsgs_rfecv()
############################
# Run FS using some classifier models
#
def fsgs_rfecv(input_df
, target
, param_gridLd = [{'fs__min_features_to_select' : [1]}]
, blind_test_df = pd.DataFrame()
, blind_test_target = pd.Series(dtype = 'int64')
, estimator = LogisticRegression(**rs) # placeholder
, use_fs = False # uses estimator as the RFECV parameter for fs. Set to TRUE if you want to supply custom_fs as shown below
, custom_fs = RFECV(DecisionTreeClassifier(**rs) , cv = skf_cv, scoring = 'matthews_corrcoef')
, cv_method = skf_cv
, var_type = ['numerical', 'categorical' , 'mixed']
, verbose = 3
):
'''
returns
Dict containing results from FS and hyperparam tuning for a given estiamtor
>>> ADD MORE <<<
optimised/selected based on mcc
'''
###########################################################################
#================================================
# Determine categorical and numerical features
#================================================
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
numerical_ix
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
categorical_ix
#================================================
# Determine preprocessing steps ~ var_type
#================================================
if var_type == 'numerical':
t = [('num', MinMaxScaler(), numerical_ix)]
if var_type == 'categorical':
t = [('cat', OneHotEncoder(), categorical_ix)]
if var_type == 'mixed':
t = [('cat', OneHotEncoder(), categorical_ix)
, ('num', MinMaxScaler(), numerical_ix)]
col_transform = ColumnTransformer(transformers = t
, remainder='passthrough')
###########################################################################
#==================================================
# Create var_type ~ column names
# using one hot encoder with RFECV means
# the names internally are lost. Hence
# fit col_transformeer to my input_df and get
# all the column names out and stored in a var
# to allow the 'selected features' to be subsetted
# from the numpy boolean array
#=================================================
col_transform.fit(input_df)
col_transform.get_feature_names_out()
var_type_colnames = col_transform.get_feature_names_out()
var_type_colnames = pd.Index(var_type_colnames)
if var_type == 'mixed':
print('\nVariable type is:', var_type
, '\nNo. of columns in input_df:', len(input_df.columns)
, '\nNo. of columns post one hot encoder:', len(var_type_colnames))
else:
print('\nNo. of columns in input_df:', len(input_df.columns))
#==================================
# Build FS with supplied estimator
#==================================
if use_fs:
fs = custom_fs
else:
fs = RFECV(estimator, cv = skf_cv, scoring = 'matthews_corrcoef')
#==================================
# Build basic param grid
#==================================
# param_gridD = [
# {'fs__min_features_to_select' : [1]
# }]
############################################################################
# Create Pipeline object
pipe = Pipeline([
('pre', col_transform),
('fs', fs),
('clf', estimator)])
############################################################################
# Define GridSearchCV
gscv_fs = GridSearchCV(pipe
#, param_gridLd = param_gridD
, param_gridLd
, cv = cv_method
, scoring = scoring_fn
, refit = 'mcc'
, verbose = 3
, return_train_score = True
, **njobs)
gscv_fs.fit(input_df, target)
###########################################################################
# Get best param and scores out
gscv_fs.best_params_
gscv_fs.best_score_
# Training best score corresponds to the max of the mean_test<score>
train_bscore = round(gscv_fs.best_score_, 2); train_bscore
print('\nTraining best score (MCC):', train_bscore)
gscv_fs.cv_results_['mean_test_mcc']
round(gscv_fs.cv_results_['mean_test_mcc'].max(),2)
round(np.nanmax(gscv_fs.cv_results_['mean_test_mcc']),2)
check_train_score = [round(gscv_fs.cv_results_['mean_test_mcc'].max(),2)
, round(np.nanmax(gscv_fs.cv_results_['mean_test_mcc']),2)]
check_train_score = np.nanmax(check_train_score)
# Training results
gscv_tr_resD = gscv_fs.cv_results_
mod_refit_param = gscv_fs.refit
# sanity check
if train_bscore == check_train_score:
print('\nVerified training score (MCC):', train_bscore )
else:
sys.exit('\nTraining score could not be internatlly verified. Please check training results dict')
#-------------------------
# Dict of CV results
#-------------------------
cv_allD = gscv_fs.cv_results_
cvdf0 = pd.DataFrame(cv_allD)
cvdf = cvdf0.filter(regex='mean_test', axis = 1)
cvdfT = cvdf.T
cvdfT.columns = ['cv_score']
cvdfTr = cvdfT.loc[:,'cv_score'].round(decimals = 2) # round values
cvD = cvdfTr.to_dict()
print('\n CV results dict generated for:', len(scoring_fn), 'scores'
, '\nThese are:', scoring_fn.keys())
#-------------------------
# Blind test: REAL check!
#-------------------------
#tp = gscv_fs.predict(X_bts)
tp = gscv_fs.predict(blind_test_df)
print('\nMCC on Blind test:' , round(matthews_corrcoef(blind_test_target, tp),2))
print('\nAccuracy on Blind test:', round(accuracy_score(blind_test_target, tp),2))
#=================
# info extraction
#=================
# gives input vals??
gscv_fs._check_n_features
# gives gscv params used
gscv_fs._get_param_names()
# gives ??
gscv_fs.best_estimator_
gscv_fs.best_params_ # gives best estimator params as a dict
gscv_fs.best_estimator_._final_estimator # similar to above, doesn't contain max_iter
gscv_fs.best_estimator_.named_steps['fs'].get_support()
gscv_fs.best_estimator_.named_steps['fs'].ranking_ # array of ranks for the features
gscv_fs.best_estimator_.named_steps['fs'].grid_scores_.mean()
gscv_fs.best_estimator_.named_steps['fs'].grid_scores_.max()
#gscv_fs.best_estimator_.named_steps['fs'].grid_scores_
estimator_mask = gscv_fs.best_estimator_.named_steps['fs'].get_support()
############################################################################
#============
# FS results
#============
# Now get the features out
#--------------
# All features
#--------------
all_features = gscv_fs.feature_names_in_
n_all_features = gscv_fs.n_features_in_
#all_features = gsfit.feature_names_in_
#--------------
# Selected features by the classifier
# Important to have var_type_colnames here
#----------------
#sel_features = X.columns[gscv_fs.best_estimator_.named_steps['fs'].get_support()] 3 only for numerical df
sel_features = var_type_colnames[gscv_fs.best_estimator_.named_steps['fs'].get_support()]
n_sf = gscv_fs.best_estimator_.named_steps['fs'].n_features_
#--------------
# Get model name
#--------------
model_name = gscv_fs.best_estimator_.named_steps['clf']
b_model_params = gscv_fs.best_params_
print('\n========================================'
, '\nRunning model:'
, '\nModel name:', model_name
, '\n==============================================='
, '\nRunning feature selection with RFECV for model'
, '\nTotal no. of features in model:', len(all_features)
, '\nThese are:\n', all_features, '\n\n'
, '\nNo of features for best model: ', n_sf
, '\nThese are:', sel_features, '\n\n'
, '\nBest Model hyperparams:', b_model_params
)
###########################################################################
############################## OUTPUT #####################################
###########################################################################
#=========================
# Blind test: BTS results
#=========================
# Build the final results with all scores for a feature selected model
#bts_predict = gscv_fs.predict(X_bts)
bts_predict = gscv_fs.predict(blind_test_df)
print('\nMCC on Blind test:' , round(matthews_corrcoef(blind_test_target, bts_predict),2))
print('\nAccuracy on Blind test:', round(accuracy_score(blind_test_target, bts_predict),2))
bts_mcc_score = round(matthews_corrcoef(blind_test_target, bts_predict),2)
# Diff b/w train and bts test scores
train_test_diff = train_bscore - bts_mcc_score
print('\nDiff b/w train and blind test score (MCC):', train_test_diff)
lr_btsD ={}
#lr_btsD['bts_mcc'] = bts_mcc_score
lr_btsD['bts_fscore'] = round(f1_score(blind_test_target, bts_predict),2)
lr_btsD['bts_precision'] = round(precision_score(blind_test_target, bts_predict),2)
lr_btsD['bts_recall'] = round(recall_score(blind_test_target, bts_predict),2)
lr_btsD['bts_accuracy'] = round(accuracy_score(blind_test_target, bts_predict),2)
lr_btsD['bts_roc_auc'] = round(roc_auc_score(blind_test_target, bts_predict),2)
lr_btsD['bts_jcc'] = round(jaccard_score(blind_test_target, bts_predict),2)
lr_btsD
#===========================
# Add FS related model info
#===========================
model_namef = str(model_name)
# FIXME: doesn't tell you which it has chosen
fs_methodf = str(gscv_fs.best_estimator_.named_steps['fs'])
all_featuresL = list(all_features)
fs_res_arrayf = str(list( gscv_fs.best_estimator_.named_steps['fs'].get_support()))
fs_res_array_rankf = str(list( gscv_fs.best_estimator_.named_steps['fs'].ranking_))
sel_featuresf = list(sel_features)
n_sf = int(n_sf)
output_modelD = {'model_name': model_namef
, 'model_refit_param': mod_refit_param
, 'Best_model_params': b_model_params
, 'n_all_features': n_all_features
, 'fs_method': fs_methodf
, 'fs_res_array': fs_res_arrayf
, 'fs_res_array_rank': fs_res_array_rankf
, 'all_feature_names': all_featuresL
, 'n_sel_features': n_sf
, 'sel_features_names': sel_featuresf}
#output_modelD
#========================================
# Update output_modelD with bts_results
#========================================
output_modelD.update(lr_btsD)
output_modelD
output_modelD['train_score (MCC)'] = train_bscore
output_modelD['bts_mcc'] = bts_mcc_score
output_modelD['train_bts_diff'] = round(train_test_diff,2)
print(output_modelD)
nlen = len(output_modelD)
#========================================
# Update output_modelD with cv_results
#========================================
output_modelD.update(cvD)
if (len(output_modelD) == nlen + len(cvD)):
print('\nFS run complete for model:', estimator
, '\nFS using:', fs
, '\nOutput dict size:', len(output_modelD))
return(output_modelD)
else:
sys.exit('\nFAIL:numbers mismatch output dict length not as expected. Please check')

View file

@ -37,7 +37,7 @@ def setvars(gene,drug):
import argparse import argparse
import re import re
#%% GLOBALS #%% GLOBALS
tts_split = "70/30" tts_split = "70_30"
rs = {'random_state': 42} rs = {'random_state': 42}
njobs = {'n_jobs': 10} njobs = {'n_jobs': 10}
@ -727,7 +727,7 @@ def setvars(gene,drug):
#------------------------------ #------------------------------
oversample = RandomOverSampler(sampling_strategy='minority') oversample = RandomOverSampler(sampling_strategy='minority')
X_ros, y_ros = oversample.fit_resample(X, y) X_ros, y_ros = oversample.fit_resample(X, y)
print('Simple Random OverSampling\n', Counter(y_ros)) print('\nSimple Random OverSampling\n', Counter(y_ros))
print(X_ros.shape) print(X_ros.shape)
#------------------------------ #------------------------------
@ -736,7 +736,7 @@ def setvars(gene,drug):
#------------------------------ #------------------------------
undersample = RandomUnderSampler(sampling_strategy='majority') undersample = RandomUnderSampler(sampling_strategy='majority')
X_rus, y_rus = undersample.fit_resample(X, y) X_rus, y_rus = undersample.fit_resample(X, y)
print('Simple Random UnderSampling\n', Counter(y_rus)) print('\nSimple Random UnderSampling\n', Counter(y_rus))
print(X_rus.shape) print(X_rus.shape)
#------------------------------ #------------------------------
@ -747,7 +747,7 @@ def setvars(gene,drug):
X_ros, y_ros = oversample.fit_resample(X, y) X_ros, y_ros = oversample.fit_resample(X, y)
undersample = RandomUnderSampler(sampling_strategy='majority') undersample = RandomUnderSampler(sampling_strategy='majority')
X_rouC, y_rouC = undersample.fit_resample(X_ros, y_ros) X_rouC, y_rouC = undersample.fit_resample(X_ros, y_ros)
print('Simple Combined Over and UnderSampling\n', Counter(y_rouC)) print('\nSimple Combined Over and UnderSampling\n', Counter(y_rouC))
print(X_rouC.shape) print(X_rouC.shape)
#------------------------------ #------------------------------
@ -767,7 +767,7 @@ def setvars(gene,drug):
categorical_colind = X.columns.get_indexer(list(categorical_ix)) categorical_colind = X.columns.get_indexer(list(categorical_ix))
categorical_colind categorical_colind
k_sm = 5 # 5 is deafult k_sm = 5 # 5 is default
sm_nc = SMOTENC(categorical_features=categorical_colind, k_neighbors = k_sm, **rs, **njobs) sm_nc = SMOTENC(categorical_features=categorical_colind, k_neighbors = k_sm, **rs, **njobs)
X_smnc, y_smnc = sm_nc.fit_resample(X, y) X_smnc, y_smnc = sm_nc.fit_resample(X, y)
print('\nSMOTE_NC OverSampling\n', Counter(y_smnc)) print('\nSMOTE_NC OverSampling\n', Counter(y_smnc))
@ -797,5 +797,10 @@ def setvars(gene,drug):
# print(X_enn.shape) # print(X_enn.shape)
# print('\nSMOTE Over+Under Sampling combined\n', Counter(y_enn)) # print('\nSMOTE Over+Under Sampling combined\n', Counter(y_enn))
############################################################################### ###########################################################################
# TODO: Find over and undersampling JUST for categorical data # TODO: Find over and undersampling JUST for categorical data
###########################################################################
print('\n#################################################################'
, '\nDim of X for gene:', gene.lower(), '\n', X.shape
, '\n###############################################################')

View file

@ -34,7 +34,11 @@ def setvars(gene,drug):
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
from sklearn.pipeline import Pipeline, make_pipeline from sklearn.pipeline import Pipeline, make_pipeline
import argparse
import re
#%% GLOBALS #%% GLOBALS
tts_split = "80_20"
rs = {'random_state': 42} rs = {'random_state': 42}
njobs = {'n_jobs': 10} njobs = {'n_jobs': 10}
@ -57,11 +61,9 @@ def setvars(gene,drug):
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)} mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
jacc_score_fn = {'jcc': make_scorer(jaccard_score)} jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
#%% FOR LATER: Combine ED logo data #%% FOR LATER: Combine ED logo data
########################################################################### ###########################################################################
rs = {'random_state': 42}
njobs = {'n_jobs': 10}
homedir = os.path.expanduser("~") homedir = os.path.expanduser("~")
geneL_basic = ['pnca'] geneL_basic = ['pnca']
@ -422,118 +424,31 @@ def setvars(gene,drug):
#========================== #==========================
my_df_ml = my_df.copy() my_df_ml = my_df.copy()
#%% Build X: input for ML # Build column names to mask for affinity chanhes
common_cols_stabiltyN = ['ligand_distance'
, 'ligand_affinity_change'
, 'duet_stability_change'
, 'ddg_foldx'
, 'deepddg'
, 'ddg_dynamut2'
, 'mmcsm_lig'
, 'contacts']
# Build stability columns ~ gene
if gene.lower() in geneL_basic: if gene.lower() in geneL_basic:
X_stabilityN = common_cols_stabiltyN #X_stabilityN = common_cols_stabiltyN
gene_affinity_colnames = []# not needed as its the common ones
cols_to_mask = ['ligand_affinity_change'] cols_to_mask = ['ligand_affinity_change']
if gene.lower() in geneL_ppi2: if gene.lower() in geneL_ppi2:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_ppi2_affinity' , 'interface_dist'] gene_affinity_colnames = ['mcsm_ppi2_affinity', 'interface_dist']
geneL_ppi2_st_cols = ['mcsm_ppi2_affinity', 'interface_dist'] #X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity'] cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity']
if gene.lower() in geneL_na: if gene.lower() in geneL_na:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity'] gene_affinity_colnames = ['mcsm_na_affinity']
geneL_na_st_cols = ['mcsm_na_affinity'] #X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity'] cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity']
if gene.lower() in geneL_na_ppi2: if gene.lower() in geneL_na_ppi2:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist'] gene_affinity_colnames = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
geneL_na_ppi2_st_cols = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist'] #X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity'] cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity']
X_foldX_cols = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss'
]
X_str = ['rsa'
#, 'asa'
, 'kd_values'
, 'rd_values']
X_ssFN = X_stabilityN + X_str + X_foldX_cols
X_evolFN = ['consurf_score'
, 'snap2_score'
, 'provean_score']
X_genomic_mafor = ['maf'
, 'logorI'
# , 'or_rawI'
# , 'or_mychisq'
# , 'or_logistic'
# , 'or_fisher'
# , 'pval_fisher'
]
X_genomic_linegae = ['lineage_proportion'
, 'dist_lineage_proportion'
#, 'lineage' # could be included as a category but it has L2;L4 formatting
, 'lineage_count_all'
, 'lineage_count_unique'
]
X_genomicFN = X_genomic_mafor + X_genomic_linegae
X_aaindexFN = list(aa_df_cols)
print('\nTotal no. of features for aaindex:', len(X_aaindexFN))
# numerical feature names
numerical_FN = X_ssFN + X_evolFN + X_genomicFN + X_aaindexFN
# categorical feature names
categorical_FN = ['ss_class'
# , 'wt_prop_water'
# , 'mut_prop_water'
# , 'wt_prop_polarity'
# , 'mut_prop_polarity'
# , 'wt_calcprop'
# , 'mut_calcprop'
, 'aa_prop_change'
, 'electrostatics_change'
, 'polarity_change'
, 'water_change'
, 'drtype_mode_labels' # beware then you can't use it to predict [USED it for uq_v1, not v2]
, 'active_site' #[didn't use it for uq_v1]
#, 'gene_name' # will be required for the combined stuff
]
#----------------------------------------------
# count numerical and categorical features
#----------------------------------------------
print('\nNo. of numerical features:', len(numerical_FN)
, '\nNo. of categorical features:', len(categorical_FN))
#======================= #=======================
# Masking columns: # Masking columns:
# (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10 # (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
#======================= #=======================
# my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts()
# my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
# my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0
# (my_df_ml['ligand_affinity_change'] == 0).sum()
my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts() my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts()
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts() my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts() my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts()
@ -544,19 +459,146 @@ def setvars(gene,drug):
mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask] mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask]
#===================================================
# write file for check # write file for check
mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True) mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True)
mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv') mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv')
#===================================================
###############################################################################
#%% Feature groups (FG): Build X for Input ML
############################################################################
#===========================
# FG1: Evolutionary features
#===========================
X_evolFN = ['consurf_score'
, 'snap2_score'
, 'provean_score']
##################################################################### ###############################################################################
#========================
# FG2: Stability features
#========================
#--------
# common
#--------
X_common_stability_Fnum = [
'duet_stability_change'
, 'ddg_foldx'
, 'deepddg'
, 'ddg_dynamut2'
, 'contacts']
#--------
# FoldX
#--------
X_foldX_Fnum = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss']
X_stability_FN = X_common_stability_Fnum + X_foldX_Fnum
###############################################################################
#===================
# FG3: Affinity features
#===================
common_affinity_Fnum = ['ligand_distance'
, 'ligand_affinity_change'
, 'mmcsm_lig']
# if gene.lower() in geneL_basic:
# X_affinityFN = common_affinity_Fnum
# else:
# X_affinityFN = common_affinity_Fnum + gene_affinity_colnames
X_affinityFN = common_affinity_Fnum + gene_affinity_colnames
###############################################################################
#============================
# FG4: Residue level features
#============================
#-----------
# AA index
#-----------
X_aaindex_Fnum = list(aa_df_cols)
print('\nTotal no. of features for aaindex:', len(X_aaindex_Fnum))
#-----------------
# surface area
# depth
# hydrophobicity
#-----------------
X_str_Fnum = ['rsa'
#, 'asa'
, 'kd_values'
, 'rd_values']
#---------------------------
# Other aa properties
# active site indication
#---------------------------
X_aap_Fcat = ['ss_class'
# , 'wt_prop_water'
# , 'mut_prop_water'
# , 'wt_prop_polarity'
# , 'mut_prop_polarity'
# , 'wt_calcprop'
# , 'mut_calcprop'
, 'aa_prop_change'
, 'electrostatics_change'
, 'polarity_change'
, 'water_change'
, 'active_site']
X_resprop_FN = X_aaindex_Fnum + X_str_Fnum + X_aap_Fcat
###############################################################################
#========================
# FG5: Genomic features
#========================
X_gn_mafor_Fnum = ['maf'
#, 'logorI'
# , 'or_rawI'
# , 'or_mychisq'
# , 'or_logistic'
# , 'or_fisher'
# , 'pval_fisher'
]
X_gn_linegae_Fnum = ['lineage_proportion'
, 'dist_lineage_proportion'
#, 'lineage' # could be included as a category but it has L2;L4 formatting
, 'lineage_count_all'
, 'lineage_count_unique'
]
# X_gn_Fcat = ['drtype_mode_labels' # beware then you can't use it to predict [USED it for uq_v1, not v2]
# #, 'gene_name' # will be required for the combined stuff
# ]
X_gn_Fcat = []
X_genomicFN = X_gn_mafor_Fnum + X_gn_linegae_Fnum + X_gn_Fcat
###############################################################################
#========================
# FG6 collapsed: Structural : Atability + Affinity + ResidueProp
#========================
X_structural_FN = X_stability_FN + X_affinityFN + X_resprop_FN
###############################################################################
#========================
# BUILDING all features
#========================
all_featuresN = X_evolFN + X_structural_FN + X_genomicFN
###############################################################################
#%% Define training and test data
#================================================================ #================================================================
# Training and BLIND test set: 80/20 # Training and BLIND test set: 80/20
# dst with actual values : training set
# Throw away previous blind_test_df, and call the 30% data as blind_test # dst with imputed values : THROW AWAY [unrepresentative]
# as these were imputed values and initial analysis shows that this
# is not very representative
#================================================================ #================================================================
my_df_ml[drug].isna().sum() my_df_ml[drug].isna().sum()
# blind_test_df = my_df_ml[my_df_ml[drug].isna()] # blind_test_df = my_df_ml[my_df_ml[drug].isna()]
# blind_test_df.shape # blind_test_df.shape
@ -568,67 +610,13 @@ def setvars(gene,drug):
training_df['dst_mode'].value_counts() training_df['dst_mode'].value_counts()
#################################################################### ####################################################################
#====================================
###############################################################################
###############################################################################
# #%% extracting dfs based on numerical, categorical column names
# #----------------------------------
# # WITHOUT the target var included
# #----------------------------------
# num_df = training_df[numerical_FN]
# num_df.shape
# cat_df = training_df[categorical_FN]
# cat_df.shape
# all_df = training_df[numerical_FN + categorical_FN]
# all_df.shape
# #------------------------------
# # WITH the target var included:
# #'wtgt': with target
# #------------------------------
# # drug and dst_mode should be the same thing
# num_df_wtgt = training_df[numerical_FN + ['dst_mode']]
# num_df_wtgt.shape
# cat_df_wtgt = training_df[categorical_FN + ['dst_mode']]
# cat_df_wtgt.shape
# all_df_wtgt = training_df[numerical_FN + categorical_FN + ['dst_mode']]
# all_df_wtgt.shape
#%%########################################################################
# #============
# # ML data: OLD
# #============
# #------
# # X: Training and Blind test (BTS)
# #------
# X = all_df_wtgt[numerical_FN + categorical_FN] # training data ALL
# X_bts = blind_test_df[numerical_FN + categorical_FN] # blind test data ALL
# #X = all_df_wtgt[numerical_FN] # training numerical only
# #X_bts = blind_test_df[numerical_FN] # blind test data numerical
# #------
# # y
# #------
# y = all_df_wtgt['dst_mode'] # training data y
# y_bts = blind_test_df['dst_mode'] # blind data test y
# #X_bts_wt = blind_test_df[numerical_FN + ['dst_mode']]
###############################################################################
###############################################################################
#======================================
# ML data: Train test split: 80/20 # ML data: Train test split: 80/20
# with stratification # with stratification
# 80% : training_data for CV # 80% : training_data for CV
# 20% : blind test # 20% : blind test
#====================================== #=====================================
x_features = training_df[all_featuresN]
# features: all_df or
x_features = training_df[numerical_FN + categorical_FN]
y_target = training_df['dst_mode'] y_target = training_df['dst_mode']
# sanity check # sanity check
@ -640,7 +628,9 @@ def setvars(gene,drug):
#https://towardsdatascience.com/finally-why-we-use-an-80-20-split-for-training-and-test-data-plus-an-alternative-method-oh-yes-edc77e96295d #https://towardsdatascience.com/finally-why-we-use-an-80-20-split-for-training-and-test-data-plus-an-alternative-method-oh-yes-edc77e96295d
else: else:
sys.exit('\nFAIL: x_features has target variable included. FIX it and rerun!') sys.exit('\nFAIL: x_features has target variable included. FIX it and rerun!')
#-------------------
# train-test split
#-------------------
#x_train, x_test, y_train, y_test # traditional var_names #x_train, x_test, y_train, y_test # traditional var_names
# so my downstream code doesn't need to change # so my downstream code doesn't need to change
X, X_bts, y, y_bts = train_test_split(x_features, y_target X, X_bts, y, y_bts = train_test_split(x_features, y_target
@ -653,15 +643,64 @@ def setvars(gene,drug):
yc2 = Counter(y_bts) yc2 = Counter(y_bts)
yc2_ratio = yc2[0]/yc2[1] yc2_ratio = yc2[0]/yc2[1]
###############################################################################
#======================================================
# Determine categorical and numerical features
#======================================================
numerical_cols = X.select_dtypes(include=['int64', 'float64']).columns
numerical_cols
categorical_cols = X.select_dtypes(include=['object', 'bool']).columns
categorical_cols
################################################################################
# IMPORTANT sanity checks
if len(X.columns) == len(X_evolFN) + len(X_stability_FN) + len(X_affinityFN) + len(X_resprop_FN) + len(X_genomicFN):
print('\nPASS: ML data with input features, training and test generated...'
, '\n\nTotal no. of input features:' , len(X.columns)
, '\n--------No. of numerical features:' , len(numerical_cols)
, '\n--------No. of categorical features:' , len(categorical_cols)
, '\n\nTotal no. of evolutionary features:' , len(X_evolFN)
, '\n\nTotal no. of stability features:' , len(X_stability_FN)
, '\n--------Common stabilty cols:' , len(X_common_stability_Fnum)
, '\n--------Foldx cols:' , len(X_foldX_Fnum)
, '\n\nTotal no. of affinity features:' , len(X_affinityFN)
, '\n--------Common affinity cols:' , len(common_affinity_Fnum)
, '\n--------Gene specific affinity cols:' , len(gene_affinity_colnames)
, '\n\nTotal no. of residue level features:', len(X_resprop_FN)
, '\n--------AA index cols:' , len(X_aaindex_Fnum)
, '\n--------Residue Prop cols:' , len(X_str_Fnum)
, '\n--------AA change Prop cols:' , len(X_aap_Fcat)
, '\n\nTotal no. of genomic features:' , len(X_genomicFN)
, '\n--------MAF+OR cols:' , len(X_gn_mafor_Fnum)
, '\n--------Lineage cols:' , len(X_gn_linegae_Fnum)
, '\n--------Other cols:' , len(X_gn_Fcat)
)
else:
print('\nFAIL: numbers mismatch'
, '\nExpected:',len(X_evolFN) + len(X_stability_FN) + len(X_affinityFN) + len(X_resprop_FN) + len(X_genomicFN)
, '\nGot:', len(X.columns))
sys.exit()
###############################################################################
print('\n-------------------------------------------------------------' print('\n-------------------------------------------------------------'
, '\nSuccessfully split data with stratification: 80/20 ' , '\nSuccessfully split data: ALL features'
, '\nInput features data size:', x_features.shape , '\nactual values: training set'
, '\nTrain data size:', X.shape , '\nSplit:', tts_split
, '\nTest data size:', X_bts.shape #, '\nimputed values: blind test set'
, '\n\nTotal data size:', len(X) + len(X_bts)
, '\n\nTrain data size:', X.shape
, '\ny_train numbers:', yc1 , '\ny_train numbers:', yc1
, '\ny_train ratio:',yc1_ratio
, '\n' , '\n\nTest data size:', X_bts.shape
, '\ny_test_numbers:', yc2 , '\ny_test_numbers:', yc2
, '\n\ny_train ratio:',yc1_ratio
, '\ny_test ratio:', yc2_ratio , '\ny_test ratio:', yc2_ratio
, '\n-------------------------------------------------------------' , '\n-------------------------------------------------------------'
) )
@ -760,3 +799,8 @@ def setvars(gene,drug):
############################################################################### ###############################################################################
# TODO: Find over and undersampling JUST for categorical data # TODO: Find over and undersampling JUST for categorical data
###########################################################################
print('\n#################################################################'
, '\nDim of X for gene:', gene.lower(), '\n', X.shape
, '\n###############################################################')

View file

@ -34,7 +34,11 @@ def setvars(gene,drug):
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
from sklearn.pipeline import Pipeline, make_pipeline from sklearn.pipeline import Pipeline, make_pipeline
import argparse
import re
#%% GLOBALS #%% GLOBALS
tts_split = "70_30"
rs = {'random_state': 42} rs = {'random_state': 42}
njobs = {'n_jobs': 10} njobs = {'n_jobs': 10}
@ -57,11 +61,9 @@ def setvars(gene,drug):
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)} mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
jacc_score_fn = {'jcc': make_scorer(jaccard_score)} jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
#%% FOR LATER: Combine ED logo data #%% FOR LATER: Combine ED logo data
########################################################################### ###########################################################################
rs = {'random_state': 42}
njobs = {'n_jobs': 10}
homedir = os.path.expanduser("~") homedir = os.path.expanduser("~")
geneL_basic = ['pnca'] geneL_basic = ['pnca']
@ -422,118 +424,31 @@ def setvars(gene,drug):
#========================== #==========================
my_df_ml = my_df.copy() my_df_ml = my_df.copy()
#%% Build X: input for ML # Build column names to mask for affinity chanhes
common_cols_stabiltyN = ['ligand_distance'
, 'ligand_affinity_change'
, 'duet_stability_change'
, 'ddg_foldx'
, 'deepddg'
, 'ddg_dynamut2'
, 'mmcsm_lig'
, 'contacts']
# Build stability columns ~ gene
if gene.lower() in geneL_basic: if gene.lower() in geneL_basic:
X_stabilityN = common_cols_stabiltyN #X_stabilityN = common_cols_stabiltyN
gene_affinity_colnames = []# not needed as its the common ones
cols_to_mask = ['ligand_affinity_change'] cols_to_mask = ['ligand_affinity_change']
if gene.lower() in geneL_ppi2: if gene.lower() in geneL_ppi2:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_ppi2_affinity' , 'interface_dist'] gene_affinity_colnames = ['mcsm_ppi2_affinity', 'interface_dist']
geneL_ppi2_st_cols = ['mcsm_ppi2_affinity', 'interface_dist'] #X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity'] cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity']
if gene.lower() in geneL_na: if gene.lower() in geneL_na:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity'] gene_affinity_colnames = ['mcsm_na_affinity']
geneL_na_st_cols = ['mcsm_na_affinity'] #X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity'] cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity']
if gene.lower() in geneL_na_ppi2: if gene.lower() in geneL_na_ppi2:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist'] gene_affinity_colnames = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
geneL_na_ppi2_st_cols = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist'] #X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity'] cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity']
X_foldX_cols = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss'
]
X_str = ['rsa'
#, 'asa'
, 'kd_values'
, 'rd_values']
X_ssFN = X_stabilityN + X_str + X_foldX_cols
X_evolFN = ['consurf_score'
, 'snap2_score'
, 'provean_score']
X_genomic_mafor = ['maf'
, 'logorI'
# , 'or_rawI'
# , 'or_mychisq'
# , 'or_logistic'
# , 'or_fisher'
# , 'pval_fisher'
]
X_genomic_linegae = ['lineage_proportion'
, 'dist_lineage_proportion'
#, 'lineage' # could be included as a category but it has L2;L4 formatting
, 'lineage_count_all'
, 'lineage_count_unique'
]
X_genomicFN = X_genomic_mafor + X_genomic_linegae
X_aaindexFN = list(aa_df_cols)
print('\nTotal no. of features for aaindex:', len(X_aaindexFN))
# numerical feature names
numerical_FN = X_ssFN + X_evolFN + X_genomicFN + X_aaindexFN
# categorical feature names
categorical_FN = ['ss_class'
# , 'wt_prop_water'
# , 'mut_prop_water'
# , 'wt_prop_polarity'
# , 'mut_prop_polarity'
# , 'wt_calcprop'
# , 'mut_calcprop'
, 'aa_prop_change'
, 'electrostatics_change'
, 'polarity_change'
, 'water_change'
, 'drtype_mode_labels' # beware then you can't use it to predict [USED it for uq_v1, not v2]
, 'active_site' #[didn't use it for uq_v1]
#, 'gene_name' # will be required for the combined stuff
]
#----------------------------------------------
# count numerical and categorical features
#----------------------------------------------
print('\nNo. of numerical features:', len(numerical_FN)
, '\nNo. of categorical features:', len(categorical_FN))
#======================= #=======================
# Masking columns: # Masking columns:
# (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10 # (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
#======================= #=======================
# my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts()
# my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
# my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0
# (my_df_ml['ligand_affinity_change'] == 0).sum()
my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts() my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts()
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts() my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts() my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts()
@ -544,17 +459,146 @@ def setvars(gene,drug):
mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask] mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask]
#===================================================
# write file for check # write file for check
mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True) mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True)
mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv') mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv')
#===================================================
###############################################################################
#%% Feature groups (FG): Build X for Input ML
############################################################################
#===========================
# FG1: Evolutionary features
#===========================
X_evolFN = ['consurf_score'
, 'snap2_score'
, 'provean_score']
##################################################################### ###############################################################################
#========================
# FG2: Stability features
#========================
#--------
# common
#--------
X_common_stability_Fnum = [
'duet_stability_change'
, 'ddg_foldx'
, 'deepddg'
, 'ddg_dynamut2'
, 'contacts']
#--------
# FoldX
#--------
X_foldX_Fnum = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss']
X_stability_FN = X_common_stability_Fnum + X_foldX_Fnum
###############################################################################
#===================
# FG3: Affinity features
#===================
common_affinity_Fnum = ['ligand_distance'
, 'ligand_affinity_change'
, 'mmcsm_lig']
# if gene.lower() in geneL_basic:
# X_affinityFN = common_affinity_Fnum
# else:
# X_affinityFN = common_affinity_Fnum + gene_affinity_colnames
X_affinityFN = common_affinity_Fnum + gene_affinity_colnames
###############################################################################
#============================
# FG4: Residue level features
#============================
#-----------
# AA index
#-----------
X_aaindex_Fnum = list(aa_df_cols)
print('\nTotal no. of features for aaindex:', len(X_aaindex_Fnum))
#-----------------
# surface area
# depth
# hydrophobicity
#-----------------
X_str_Fnum = ['rsa'
#, 'asa'
, 'kd_values'
, 'rd_values']
#---------------------------
# Other aa properties
# active site indication
#---------------------------
X_aap_Fcat = ['ss_class'
# , 'wt_prop_water'
# , 'mut_prop_water'
# , 'wt_prop_polarity'
# , 'mut_prop_polarity'
# , 'wt_calcprop'
# , 'mut_calcprop'
, 'aa_prop_change'
, 'electrostatics_change'
, 'polarity_change'
, 'water_change'
, 'active_site']
X_resprop_FN = X_aaindex_Fnum + X_str_Fnum + X_aap_Fcat
###############################################################################
#========================
# FG5: Genomic features
#========================
X_gn_mafor_Fnum = ['maf'
#, 'logorI'
# , 'or_rawI'
# , 'or_mychisq'
# , 'or_logistic'
# , 'or_fisher'
# , 'pval_fisher'
]
X_gn_linegae_Fnum = ['lineage_proportion'
, 'dist_lineage_proportion'
#, 'lineage' # could be included as a category but it has L2;L4 formatting
, 'lineage_count_all'
, 'lineage_count_unique'
]
# X_gn_Fcat = ['drtype_mode_labels' # beware then you can't use it to predict [USED it for uq_v1, not v2]
# #, 'gene_name' # will be required for the combined stuff
# ]
X_gn_Fcat = []
X_genomicFN = X_gn_mafor_Fnum + X_gn_linegae_Fnum + X_gn_Fcat
###############################################################################
#========================
# FG6 collapsed: Structural : Atability + Affinity + ResidueProp
#========================
X_structural_FN = X_stability_FN + X_affinityFN + X_resprop_FN
###############################################################################
#========================
# BUILDING all features
#========================
all_featuresN = X_evolFN + X_structural_FN + X_genomicFN
###############################################################################
#%% Define training and test data
#================================================================ #================================================================
# Training and Blind test [COMPLETE data]: 70/30 # Training and BLIND test set: 70/30
# dst with actual values : training set
# Use complete data, call the 30% as blind test # dst with imputed values : THROW AWAY [unrepresentative]
#================================================================ #================================================================
my_df_ml[drug].isna().sum() my_df_ml[drug].isna().sum()
# blind_test_df = my_df_ml[my_df_ml[drug].isna()] # blind_test_df = my_df_ml[my_df_ml[drug].isna()]
# blind_test_df.shape # blind_test_df.shape
@ -568,79 +612,13 @@ def setvars(gene,drug):
training_df['dst_mode'].value_counts() training_df['dst_mode'].value_counts()
#################################################################### ####################################################################
###############################################################################
###############################################################################
# #%% extracting dfs based on numerical, categorical column names
# #----------------------------------
# # WITHOUT the target var included
# #----------------------------------
# num_df = training_df[numerical_FN]
# num_df.shape
# cat_df = training_df[categorical_FN]
# cat_df.shape
# all_df = training_df[numerical_FN + categorical_FN]
# all_df.shape
# #------------------------------
# # WITH the target var included:
# #'wtgt': with target
# #------------------------------
# # drug and dst_mode should be the same thing
# num_df_wtgt = training_df[numerical_FN + ['dst_mode']]
# num_df_wtgt.shape
# cat_df_wtgt = training_df[categorical_FN + ['dst_mode']]
# cat_df_wtgt.shape
# all_df_wtgt = training_df[numerical_FN + categorical_FN + ['dst_mode']]
# all_df_wtgt.shape
#%%########################################################################
# #============
# # ML data: OLD
# #============
# #------
# # X: Training and Blind test (BTS)
# #------
# X = all_df_wtgt[numerical_FN + categorical_FN] # training data ALL
# X_bts = blind_test_df[numerical_FN + categorical_FN] # blind test data ALL
# #X = all_df_wtgt[numerical_FN] # training numerical only
# #X_bts = blind_test_df[numerical_FN] # blind test data numerical
# #------
# # y
# #------
# y = all_df_wtgt['dst_mode'] # training data y
# y_bts = blind_test_df['dst_mode'] # blind data test y
# #X_bts_wt = blind_test_df[numerical_FN + ['dst_mode']]
# # Quick check
# #(X['ligand_affinity_change']==0).sum() == (X['ligand_distance']>10).sum()
# for i in range(len(cols_to_mask)):
# ind = i+1
# print('\nindex:', i, '\nind:', ind)
# print('\nMask count check:'
# , (my_df_ml[cols_to_mask[i]]==0).sum() == (my_df_ml['ligand_distance']>10).sum()
# )
# print('Original Data\n', Counter(y)
# , 'Data dim:', X.shape)
###############################################################################
###############################################################################
#==================================== #====================================
# ML data: Train test split [COMPLETE data]: 70/30 # ML data: Train test split: 70/30
# with stratification # with stratification
# 70% : training_data for CV # 70% : training_data for CV
# 30% : blind test # 30% : blind test
#===================================== #=====================================
x_features = training_df[all_featuresN]
# features: all_df or
x_features = training_df[numerical_FN + categorical_FN]
y_target = training_df['dst_mode'] y_target = training_df['dst_mode']
# sanity check # sanity check
@ -652,7 +630,9 @@ def setvars(gene,drug):
#https://towardsdatascience.com/finally-why-we-use-an-80-20-split-for-training-and-test-data-plus-an-alternative-method-oh-yes-edc77e96295d #https://towardsdatascience.com/finally-why-we-use-an-80-20-split-for-training-and-test-data-plus-an-alternative-method-oh-yes-edc77e96295d
else: else:
sys.exit('\nFAIL: x_features has target variable included. FIX it and rerun!') sys.exit('\nFAIL: x_features has target variable included. FIX it and rerun!')
#-------------------
# train-test split
#-------------------
#x_train, x_test, y_train, y_test # traditional var_names #x_train, x_test, y_train, y_test # traditional var_names
# so my downstream code doesn't need to change # so my downstream code doesn't need to change
X, X_bts, y, y_bts = train_test_split(x_features, y_target X, X_bts, y, y_bts = train_test_split(x_features, y_target
@ -665,15 +645,64 @@ def setvars(gene,drug):
yc2 = Counter(y_bts) yc2 = Counter(y_bts)
yc2_ratio = yc2[0]/yc2[1] yc2_ratio = yc2[0]/yc2[1]
###############################################################################
#======================================================
# Determine categorical and numerical features
#======================================================
numerical_cols = X.select_dtypes(include=['int64', 'float64']).columns
numerical_cols
categorical_cols = X.select_dtypes(include=['object', 'bool']).columns
categorical_cols
################################################################################
# IMPORTANT sanity checks
if len(X.columns) == len(X_evolFN) + len(X_stability_FN) + len(X_affinityFN) + len(X_resprop_FN) + len(X_genomicFN):
print('\nPASS: ML data with input features, training and test generated...'
, '\n\nTotal no. of input features:' , len(X.columns)
, '\n--------No. of numerical features:' , len(numerical_cols)
, '\n--------No. of categorical features:' , len(categorical_cols)
, '\n\nTotal no. of evolutionary features:' , len(X_evolFN)
, '\n\nTotal no. of stability features:' , len(X_stability_FN)
, '\n--------Common stabilty cols:' , len(X_common_stability_Fnum)
, '\n--------Foldx cols:' , len(X_foldX_Fnum)
, '\n\nTotal no. of affinity features:' , len(X_affinityFN)
, '\n--------Common affinity cols:' , len(common_affinity_Fnum)
, '\n--------Gene specific affinity cols:' , len(gene_affinity_colnames)
, '\n\nTotal no. of residue level features:', len(X_resprop_FN)
, '\n--------AA index cols:' , len(X_aaindex_Fnum)
, '\n--------Residue Prop cols:' , len(X_str_Fnum)
, '\n--------AA change Prop cols:' , len(X_aap_Fcat)
, '\n\nTotal no. of genomic features:' , len(X_genomicFN)
, '\n--------MAF+OR cols:' , len(X_gn_mafor_Fnum)
, '\n--------Lineage cols:' , len(X_gn_linegae_Fnum)
, '\n--------Other cols:' , len(X_gn_Fcat)
)
else:
print('\nFAIL: numbers mismatch'
, '\nExpected:',len(X_evolFN) + len(X_stability_FN) + len(X_affinityFN) + len(X_resprop_FN) + len(X_genomicFN)
, '\nGot:', len(X.columns))
sys.exit()
###############################################################################
print('\n-------------------------------------------------------------' print('\n-------------------------------------------------------------'
, '\nSuccessfully split data with stratification [COMPLETE data]: 70/30' , '\nSuccessfully split data: ALL features'
, '\nInput features data size:', x_features.shape , '\nactual values: training set'
, '\nTrain data size:', X.shape , '\nSplit:', tts_split
, '\nTest data size:', X_bts.shape #, '\nimputed values: blind test set'
, '\n\nTotal data size:', len(X) + len(X_bts)
, '\n\nTrain data size:', X.shape
, '\ny_train numbers:', yc1 , '\ny_train numbers:', yc1
, '\ny_train ratio:',yc1_ratio
, '\n' , '\n\nTest data size:', X_bts.shape
, '\ny_test_numbers:', yc2 , '\ny_test_numbers:', yc2
, '\n\ny_train ratio:',yc1_ratio
, '\ny_test ratio:', yc2_ratio , '\ny_test ratio:', yc2_ratio
, '\n-------------------------------------------------------------' , '\n-------------------------------------------------------------'
) )
@ -772,3 +801,8 @@ def setvars(gene,drug):
############################################################################### ###############################################################################
# TODO: Find over and undersampling JUST for categorical data # TODO: Find over and undersampling JUST for categorical data
###########################################################################
print('\n#################################################################'
, '\nDim of X for gene:', gene.lower(), '\n', X.shape
, '\n###############################################################')

View file

@ -34,7 +34,11 @@ def setvars(gene,drug):
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
from sklearn.pipeline import Pipeline, make_pipeline from sklearn.pipeline import Pipeline, make_pipeline
import argparse
import re
#%% GLOBALS #%% GLOBALS
tts_split = "80_20"
rs = {'random_state': 42} rs = {'random_state': 42}
njobs = {'n_jobs': 10} njobs = {'n_jobs': 10}
@ -57,11 +61,9 @@ def setvars(gene,drug):
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)} mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
jacc_score_fn = {'jcc': make_scorer(jaccard_score)} jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
#%% FOR LATER: Combine ED logo data #%% FOR LATER: Combine ED logo data
########################################################################### ###########################################################################
rs = {'random_state': 42}
njobs = {'n_jobs': 10}
homedir = os.path.expanduser("~") homedir = os.path.expanduser("~")
geneL_basic = ['pnca'] geneL_basic = ['pnca']
@ -422,118 +424,31 @@ def setvars(gene,drug):
#========================== #==========================
my_df_ml = my_df.copy() my_df_ml = my_df.copy()
#%% Build X: input for ML # Build column names to mask for affinity chanhes
common_cols_stabiltyN = ['ligand_distance'
, 'ligand_affinity_change'
, 'duet_stability_change'
, 'ddg_foldx'
, 'deepddg'
, 'ddg_dynamut2'
, 'mmcsm_lig'
, 'contacts']
# Build stability columns ~ gene
if gene.lower() in geneL_basic: if gene.lower() in geneL_basic:
X_stabilityN = common_cols_stabiltyN #X_stabilityN = common_cols_stabiltyN
gene_affinity_colnames = []# not needed as its the common ones
cols_to_mask = ['ligand_affinity_change'] cols_to_mask = ['ligand_affinity_change']
if gene.lower() in geneL_ppi2: if gene.lower() in geneL_ppi2:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_ppi2_affinity' , 'interface_dist'] gene_affinity_colnames = ['mcsm_ppi2_affinity', 'interface_dist']
geneL_ppi2_st_cols = ['mcsm_ppi2_affinity', 'interface_dist'] #X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity'] cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity']
if gene.lower() in geneL_na: if gene.lower() in geneL_na:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity'] gene_affinity_colnames = ['mcsm_na_affinity']
geneL_na_st_cols = ['mcsm_na_affinity'] #X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity'] cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity']
if gene.lower() in geneL_na_ppi2: if gene.lower() in geneL_na_ppi2:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist'] gene_affinity_colnames = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
geneL_na_ppi2_st_cols = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist'] #X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity'] cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity']
X_foldX_cols = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss'
]
X_str = ['rsa'
#, 'asa'
, 'kd_values'
, 'rd_values']
X_ssFN = X_stabilityN + X_str + X_foldX_cols
X_evolFN = ['consurf_score'
, 'snap2_score'
, 'provean_score']
X_genomic_mafor = ['maf'
, 'logorI'
# , 'or_rawI'
# , 'or_mychisq'
# , 'or_logistic'
# , 'or_fisher'
# , 'pval_fisher'
]
X_genomic_linegae = ['lineage_proportion'
, 'dist_lineage_proportion'
#, 'lineage' # could be included as a category but it has L2;L4 formatting
, 'lineage_count_all'
, 'lineage_count_unique'
]
X_genomicFN = X_genomic_mafor + X_genomic_linegae
X_aaindexFN = list(aa_df_cols)
print('\nTotal no. of features for aaindex:', len(X_aaindexFN))
# numerical feature names
numerical_FN = X_ssFN + X_evolFN + X_genomicFN + X_aaindexFN
# categorical feature names
categorical_FN = ['ss_class'
# , 'wt_prop_water'
# , 'mut_prop_water'
# , 'wt_prop_polarity'
# , 'mut_prop_polarity'
# , 'wt_calcprop'
# , 'mut_calcprop'
, 'aa_prop_change'
, 'electrostatics_change'
, 'polarity_change'
, 'water_change'
, 'drtype_mode_labels' # beware then you can't use it to predict [USED it for uq_v1, not v2]
, 'active_site' #[didn't use it for uq_v1]
#, 'gene_name' # will be required for the combined stuff
]
#----------------------------------------------
# count numerical and categorical features
#----------------------------------------------
print('\nNo. of numerical features:', len(numerical_FN)
, '\nNo. of categorical features:', len(categorical_FN))
#======================= #=======================
# Masking columns: # Masking columns:
# (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10 # (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
#======================= #=======================
# my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts()
# my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
# my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0
# (my_df_ml['ligand_affinity_change'] == 0).sum()
my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts() my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts()
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts() my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts() my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts()
@ -544,17 +459,146 @@ def setvars(gene,drug):
mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask] mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask]
#===================================================
# write file for check # write file for check
mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True) mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True)
mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv') mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv')
#===================================================
###############################################################################
#%% Feature groups (FG): Build X for Input ML
############################################################################
#===========================
# FG1: Evolutionary features
#===========================
X_evolFN = ['consurf_score'
, 'snap2_score'
, 'provean_score']
##################################################################### ###############################################################################
#========================
# FG2: Stability features
#========================
#--------
# common
#--------
X_common_stability_Fnum = [
'duet_stability_change'
, 'ddg_foldx'
, 'deepddg'
, 'ddg_dynamut2'
, 'contacts']
#--------
# FoldX
#--------
X_foldX_Fnum = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss']
X_stability_FN = X_common_stability_Fnum + X_foldX_Fnum
###############################################################################
#===================
# FG3: Affinity features
#===================
common_affinity_Fnum = ['ligand_distance'
, 'ligand_affinity_change'
, 'mmcsm_lig']
# if gene.lower() in geneL_basic:
# X_affinityFN = common_affinity_Fnum
# else:
# X_affinityFN = common_affinity_Fnum + gene_affinity_colnames
X_affinityFN = common_affinity_Fnum + gene_affinity_colnames
###############################################################################
#============================
# FG4: Residue level features
#============================
#-----------
# AA index
#-----------
X_aaindex_Fnum = list(aa_df_cols)
print('\nTotal no. of features for aaindex:', len(X_aaindex_Fnum))
#-----------------
# surface area
# depth
# hydrophobicity
#-----------------
X_str_Fnum = ['rsa'
#, 'asa'
, 'kd_values'
, 'rd_values']
#---------------------------
# Other aa properties
# active site indication
#---------------------------
X_aap_Fcat = ['ss_class'
# , 'wt_prop_water'
# , 'mut_prop_water'
# , 'wt_prop_polarity'
# , 'mut_prop_polarity'
# , 'wt_calcprop'
# , 'mut_calcprop'
, 'aa_prop_change'
, 'electrostatics_change'
, 'polarity_change'
, 'water_change'
, 'active_site']
X_resprop_FN = X_aaindex_Fnum + X_str_Fnum + X_aap_Fcat
###############################################################################
#========================
# FG5: Genomic features
#========================
X_gn_mafor_Fnum = ['maf'
#, 'logorI'
# , 'or_rawI'
# , 'or_mychisq'
# , 'or_logistic'
# , 'or_fisher'
# , 'pval_fisher'
]
X_gn_linegae_Fnum = ['lineage_proportion'
, 'dist_lineage_proportion'
#, 'lineage' # could be included as a category but it has L2;L4 formatting
, 'lineage_count_all'
, 'lineage_count_unique'
]
# X_gn_Fcat = ['drtype_mode_labels' # beware then you can't use it to predict [USED it for uq_v1, not v2]
# #, 'gene_name' # will be required for the combined stuff
# ]
X_gn_Fcat = []
X_genomicFN = X_gn_mafor_Fnum + X_gn_linegae_Fnum + X_gn_Fcat
###############################################################################
#========================
# FG6 collapsed: Structural : Atability + Affinity + ResidueProp
#========================
X_structural_FN = X_stability_FN + X_affinityFN + X_resprop_FN
###############################################################################
#========================
# BUILDING all features
#========================
all_featuresN = X_evolFN + X_structural_FN + X_genomicFN
###############################################################################
#%% Define training and test data
#================================================================ #================================================================
# Training and Blind test [COMPLETE data]: 80/20 # Training and BLIND test set: 80/20
# dst with actual values : training set
# Use complete data, call the 20% as blind test # dst with imputed values : THROW AWAY [unrepresentative]
#================================================================ #================================================================
my_df_ml[drug].isna().sum() my_df_ml[drug].isna().sum()
# blind_test_df = my_df_ml[my_df_ml[drug].isna()] # blind_test_df = my_df_ml[my_df_ml[drug].isna()]
# blind_test_df.shape # blind_test_df.shape
@ -568,79 +612,13 @@ def setvars(gene,drug):
training_df['dst_mode'].value_counts() training_df['dst_mode'].value_counts()
#################################################################### ####################################################################
###############################################################################
###############################################################################
# #%% extracting dfs based on numerical, categorical column names
# #----------------------------------
# # WITHOUT the target var included
# #----------------------------------
# num_df = training_df[numerical_FN]
# num_df.shape
# cat_df = training_df[categorical_FN]
# cat_df.shape
# all_df = training_df[numerical_FN + categorical_FN]
# all_df.shape
# #------------------------------
# # WITH the target var included:
# #'wtgt': with target
# #------------------------------
# # drug and dst_mode should be the same thing
# num_df_wtgt = training_df[numerical_FN + ['dst_mode']]
# num_df_wtgt.shape
# cat_df_wtgt = training_df[categorical_FN + ['dst_mode']]
# cat_df_wtgt.shape
# all_df_wtgt = training_df[numerical_FN + categorical_FN + ['dst_mode']]
# all_df_wtgt.shape
#%%########################################################################
# #============
# # ML data: OLD
# #============
# #------
# # X: Training and Blind test (BTS)
# #------
# X = all_df_wtgt[numerical_FN + categorical_FN] # training data ALL
# X_bts = blind_test_df[numerical_FN + categorical_FN] # blind test data ALL
# #X = all_df_wtgt[numerical_FN] # training numerical only
# #X_bts = blind_test_df[numerical_FN] # blind test data numerical
# #------
# # y
# #------
# y = all_df_wtgt['dst_mode'] # training data y
# y_bts = blind_test_df['dst_mode'] # blind data test y
# #X_bts_wt = blind_test_df[numerical_FN + ['dst_mode']]
# # Quick check
# #(X['ligand_affinity_change']==0).sum() == (X['ligand_distance']>10).sum()
# for i in range(len(cols_to_mask)):
# ind = i+1
# print('\nindex:', i, '\nind:', ind)
# print('\nMask count check:'
# , (my_df_ml[cols_to_mask[i]]==0).sum() == (my_df_ml['ligand_distance']>10).sum()
# )
# print('Original Data\n', Counter(y)
# , 'Data dim:', X.shape)
###############################################################################
###############################################################################
#==================================== #====================================
# ML data: Train test split [COMPLETE data]: 80/20 # ML data: Train test split: 80/20
# with stratification # with stratification
# 80% : training_data for CV # 80% : training_data for CV
# 20% : blind test # 20% : blind test
#===================================== #=====================================
x_features = training_df[all_featuresN]
# features: all_df or
x_features = training_df[numerical_FN + categorical_FN]
y_target = training_df['dst_mode'] y_target = training_df['dst_mode']
# sanity check # sanity check
@ -652,7 +630,9 @@ def setvars(gene,drug):
#https://towardsdatascience.com/finally-why-we-use-an-80-20-split-for-training-and-test-data-plus-an-alternative-method-oh-yes-edc77e96295d #https://towardsdatascience.com/finally-why-we-use-an-80-20-split-for-training-and-test-data-plus-an-alternative-method-oh-yes-edc77e96295d
else: else:
sys.exit('\nFAIL: x_features has target variable included. FIX it and rerun!') sys.exit('\nFAIL: x_features has target variable included. FIX it and rerun!')
#-------------------
# train-test split
#-------------------
#x_train, x_test, y_train, y_test # traditional var_names #x_train, x_test, y_train, y_test # traditional var_names
# so my downstream code doesn't need to change # so my downstream code doesn't need to change
X, X_bts, y, y_bts = train_test_split(x_features, y_target X, X_bts, y, y_bts = train_test_split(x_features, y_target
@ -665,15 +645,64 @@ def setvars(gene,drug):
yc2 = Counter(y_bts) yc2 = Counter(y_bts)
yc2_ratio = yc2[0]/yc2[1] yc2_ratio = yc2[0]/yc2[1]
###############################################################################
#======================================================
# Determine categorical and numerical features
#======================================================
numerical_cols = X.select_dtypes(include=['int64', 'float64']).columns
numerical_cols
categorical_cols = X.select_dtypes(include=['object', 'bool']).columns
categorical_cols
################################################################################
# IMPORTANT sanity checks
if len(X.columns) == len(X_evolFN) + len(X_stability_FN) + len(X_affinityFN) + len(X_resprop_FN) + len(X_genomicFN):
print('\nPASS: ML data with input features, training and test generated...'
, '\n\nTotal no. of input features:' , len(X.columns)
, '\n--------No. of numerical features:' , len(numerical_cols)
, '\n--------No. of categorical features:' , len(categorical_cols)
, '\n\nTotal no. of evolutionary features:' , len(X_evolFN)
, '\n\nTotal no. of stability features:' , len(X_stability_FN)
, '\n--------Common stabilty cols:' , len(X_common_stability_Fnum)
, '\n--------Foldx cols:' , len(X_foldX_Fnum)
, '\n\nTotal no. of affinity features:' , len(X_affinityFN)
, '\n--------Common affinity cols:' , len(common_affinity_Fnum)
, '\n--------Gene specific affinity cols:' , len(gene_affinity_colnames)
, '\n\nTotal no. of residue level features:', len(X_resprop_FN)
, '\n--------AA index cols:' , len(X_aaindex_Fnum)
, '\n--------Residue Prop cols:' , len(X_str_Fnum)
, '\n--------AA change Prop cols:' , len(X_aap_Fcat)
, '\n\nTotal no. of genomic features:' , len(X_genomicFN)
, '\n--------MAF+OR cols:' , len(X_gn_mafor_Fnum)
, '\n--------Lineage cols:' , len(X_gn_linegae_Fnum)
, '\n--------Other cols:' , len(X_gn_Fcat)
)
else:
print('\nFAIL: numbers mismatch'
, '\nExpected:',len(X_evolFN) + len(X_stability_FN) + len(X_affinityFN) + len(X_resprop_FN) + len(X_genomicFN)
, '\nGot:', len(X.columns))
sys.exit()
###############################################################################
print('\n-------------------------------------------------------------' print('\n-------------------------------------------------------------'
, '\nSuccessfully split data with stratification [COMPLETE data]: 80/20' , '\nSuccessfully split data: ALL features'
, '\nInput features data size:', x_features.shape , '\nactual values: training set'
, '\nTrain data size:', X.shape , '\nSplit:', tts_split
, '\nTest data size:', X_bts.shape #, '\nimputed values: blind test set'
, '\n\nTotal data size:', len(X) + len(X_bts)
, '\n\nTrain data size:', X.shape
, '\ny_train numbers:', yc1 , '\ny_train numbers:', yc1
, '\ny_train ratio:',yc1_ratio
, '\n' , '\n\nTest data size:', X_bts.shape
, '\ny_test_numbers:', yc2 , '\ny_test_numbers:', yc2
, '\n\ny_train ratio:',yc1_ratio
, '\ny_test ratio:', yc2_ratio , '\ny_test ratio:', yc2_ratio
, '\n-------------------------------------------------------------' , '\n-------------------------------------------------------------'
) )
@ -772,3 +801,8 @@ def setvars(gene,drug):
############################################################################### ###############################################################################
# TODO: Find over and undersampling JUST for categorical data # TODO: Find over and undersampling JUST for categorical data
###########################################################################
print('\n#################################################################'
, '\nDim of X for gene:', gene.lower(), '\n', X.shape
, '\n###############################################################')

View file

@ -34,7 +34,11 @@ def setvars(gene,drug):
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
from sklearn.pipeline import Pipeline, make_pipeline from sklearn.pipeline import Pipeline, make_pipeline
import argparse
import re
#%% GLOBALS #%% GLOBALS
tts_split = "sl"
rs = {'random_state': 42} rs = {'random_state': 42}
njobs = {'n_jobs': 10} njobs = {'n_jobs': 10}
@ -57,11 +61,9 @@ def setvars(gene,drug):
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)} mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
jacc_score_fn = {'jcc': make_scorer(jaccard_score)} jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
#%% FOR LATER: Combine ED logo data #%% FOR LATER: Combine ED logo data
########################################################################### ###########################################################################
rs = {'random_state': 42}
njobs = {'n_jobs': 10}
homedir = os.path.expanduser("~") homedir = os.path.expanduser("~")
geneL_basic = ['pnca'] geneL_basic = ['pnca']
@ -422,118 +424,31 @@ def setvars(gene,drug):
#========================== #==========================
my_df_ml = my_df.copy() my_df_ml = my_df.copy()
#%% Build X: input for ML # Build column names to mask for affinity chanhes
common_cols_stabiltyN = ['ligand_distance'
, 'ligand_affinity_change'
, 'duet_stability_change'
, 'ddg_foldx'
, 'deepddg'
, 'ddg_dynamut2'
, 'mmcsm_lig'
, 'contacts']
# Build stability columns ~ gene
if gene.lower() in geneL_basic: if gene.lower() in geneL_basic:
X_stabilityN = common_cols_stabiltyN #X_stabilityN = common_cols_stabiltyN
gene_affinity_colnames = []# not needed as its the common ones
cols_to_mask = ['ligand_affinity_change'] cols_to_mask = ['ligand_affinity_change']
if gene.lower() in geneL_ppi2: if gene.lower() in geneL_ppi2:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_ppi2_affinity' , 'interface_dist'] gene_affinity_colnames = ['mcsm_ppi2_affinity', 'interface_dist']
geneL_ppi2_st_cols = ['mcsm_ppi2_affinity', 'interface_dist'] #X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity'] cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity']
if gene.lower() in geneL_na: if gene.lower() in geneL_na:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity'] gene_affinity_colnames = ['mcsm_na_affinity']
geneL_na_st_cols = ['mcsm_na_affinity'] #X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity'] cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity']
if gene.lower() in geneL_na_ppi2: if gene.lower() in geneL_na_ppi2:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist'] gene_affinity_colnames = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
geneL_na_ppi2_st_cols = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist'] #X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity'] cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity']
X_foldX_cols = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss'
]
X_str = ['rsa'
#, 'asa'
, 'kd_values'
, 'rd_values']
X_ssFN = X_stabilityN + X_str + X_foldX_cols
X_evolFN = ['consurf_score'
, 'snap2_score'
, 'provean_score']
X_genomic_mafor = ['maf'
, 'logorI'
# , 'or_rawI'
# , 'or_mychisq'
# , 'or_logistic'
# , 'or_fisher'
# , 'pval_fisher'
]
X_genomic_linegae = ['lineage_proportion'
, 'dist_lineage_proportion'
#, 'lineage' # could be included as a category but it has L2;L4 formatting
, 'lineage_count_all'
, 'lineage_count_unique'
]
X_genomicFN = X_genomic_mafor + X_genomic_linegae
X_aaindexFN = list(aa_df_cols)
print('\nTotal no. of features for aaindex:', len(X_aaindexFN))
# numerical feature names
numerical_FN = X_ssFN + X_evolFN + X_genomicFN + X_aaindexFN
# categorical feature names
categorical_FN = ['ss_class'
# , 'wt_prop_water'
# , 'mut_prop_water'
# , 'wt_prop_polarity'
# , 'mut_prop_polarity'
# , 'wt_calcprop'
# , 'mut_calcprop'
, 'aa_prop_change'
, 'electrostatics_change'
, 'polarity_change'
, 'water_change'
, 'drtype_mode_labels' # beware then you can't use it to predict [USED it for uq_v1, not v2]
, 'active_site' #[didn't use it for uq_v1]
#, 'gene_name' # will be required for the combined stuff
]
#----------------------------------------------
# count numerical and categorical features
#----------------------------------------------
print('\nNo. of numerical features:', len(numerical_FN)
, '\nNo. of categorical features:', len(categorical_FN))
#======================= #=======================
# Masking columns: # Masking columns:
# (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10 # (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
#======================= #=======================
# my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts()
# my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
# my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0
# (my_df_ml['ligand_affinity_change'] == 0).sum()
my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts() my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts()
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts() my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts() my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts()
@ -544,18 +459,148 @@ def setvars(gene,drug):
mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask] mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask]
#===================================================
# write file for check # write file for check
mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True) mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True)
mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv') mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv')
#===================================================
###############################################################################
#%% Feature groups (FG): Build X for Input ML
############################################################################
#===========================
# FG1: Evolutionary features
#===========================
X_evolFN = ['consurf_score'
, 'snap2_score'
, 'provean_score']
##################################################################### ###############################################################################
#========================
# FG2: Stability features
#========================
#--------
# common
#--------
X_common_stability_Fnum = [
'duet_stability_change'
, 'ddg_foldx'
, 'deepddg'
, 'ddg_dynamut2'
, 'contacts']
#--------
# FoldX
#--------
X_foldX_Fnum = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss']
X_stability_FN = X_common_stability_Fnum + X_foldX_Fnum
###############################################################################
#===================
# FG3: Affinity features
#===================
common_affinity_Fnum = ['ligand_distance'
, 'ligand_affinity_change'
, 'mmcsm_lig']
# if gene.lower() in geneL_basic:
# X_affinityFN = common_affinity_Fnum
# else:
# X_affinityFN = common_affinity_Fnum + gene_affinity_colnames
X_affinityFN = common_affinity_Fnum + gene_affinity_colnames
###############################################################################
#============================
# FG4: Residue level features
#============================
#-----------
# AA index
#-----------
X_aaindex_Fnum = list(aa_df_cols)
print('\nTotal no. of features for aaindex:', len(X_aaindex_Fnum))
#-----------------
# surface area
# depth
# hydrophobicity
#-----------------
X_str_Fnum = ['rsa'
#, 'asa'
, 'kd_values'
, 'rd_values']
#---------------------------
# Other aa properties
# active site indication
#---------------------------
X_aap_Fcat = ['ss_class'
# , 'wt_prop_water'
# , 'mut_prop_water'
# , 'wt_prop_polarity'
# , 'mut_prop_polarity'
# , 'wt_calcprop'
# , 'mut_calcprop'
, 'aa_prop_change'
, 'electrostatics_change'
, 'polarity_change'
, 'water_change'
, 'active_site']
X_resprop_FN = X_aaindex_Fnum + X_str_Fnum + X_aap_Fcat
###############################################################################
#========================
# FG5: Genomic features
#========================
X_gn_mafor_Fnum = ['maf'
#, 'logorI'
# , 'or_rawI'
# , 'or_mychisq'
# , 'or_logistic'
# , 'or_fisher'
# , 'pval_fisher'
]
X_gn_linegae_Fnum = ['lineage_proportion'
, 'dist_lineage_proportion'
#, 'lineage' # could be included as a category but it has L2;L4 formatting
, 'lineage_count_all'
, 'lineage_count_unique'
]
# X_gn_Fcat = ['drtype_mode_labels' # beware then you can't use it to predict [USED it for uq_v1, not v2]
# #, 'gene_name' # will be required for the combined stuff
# ]
X_gn_Fcat = []
X_genomicFN = X_gn_mafor_Fnum + X_gn_linegae_Fnum + X_gn_Fcat
###############################################################################
#========================
# FG6 collapsed: Structural : Atability + Affinity + ResidueProp
#========================
X_structural_FN = X_stability_FN + X_affinityFN + X_resprop_FN
###############################################################################
#========================
# BUILDING all features
#========================
all_featuresN = X_evolFN + X_structural_FN + X_genomicFN
###############################################################################
#%% Define training and test data
#================================================================ #================================================================
# Training and Blind test [COMPLETE data]: scaling law split # Training and BLIND test set: scaling law split
#https://towardsdatascience.com/finally-why-we-use-an-80-20-split-for-training-and-test-data-plus-an-alternative-method-oh-yes-edc77e96295d #https://towardsdatascience.com/finally-why-we-use-an-80-20-split-for-training-and-test-data-plus-an-alternative-method-oh-yes-edc77e96295d
# dst with actual values : training set
# dst with imputed values : THROW AWAY [unrepresentative]
# test data size ~ 1/sqrt(features NOT including target variable) # test data size ~ 1/sqrt(features NOT including target variable)
#================================================================ #================================================================
my_df_ml[drug].isna().sum() my_df_ml[drug].isna().sum()
# blind_test_df = my_df_ml[my_df_ml[drug].isna()] # blind_test_df = my_df_ml[my_df_ml[drug].isna()]
# blind_test_df.shape # blind_test_df.shape
@ -569,79 +614,13 @@ def setvars(gene,drug):
training_df['dst_mode'].value_counts() training_df['dst_mode'].value_counts()
#################################################################### ####################################################################
###############################################################################
###############################################################################
# #%% extracting dfs based on numerical, categorical column names
# #----------------------------------
# # WITHOUT the target var included
# #----------------------------------
# num_df = training_df[numerical_FN]
# num_df.shape
# cat_df = training_df[categorical_FN]
# cat_df.shape
# all_df = training_df[numerical_FN + categorical_FN]
# all_df.shape
# #------------------------------
# # WITH the target var included:
# #'wtgt': with target
# #------------------------------
# # drug and dst_mode should be the same thing
# num_df_wtgt = training_df[numerical_FN + ['dst_mode']]
# num_df_wtgt.shape
# cat_df_wtgt = training_df[categorical_FN + ['dst_mode']]
# cat_df_wtgt.shape
# all_df_wtgt = training_df[numerical_FN + categorical_FN + ['dst_mode']]
# all_df_wtgt.shape
#%%########################################################################
# #============
# # ML data: OLD
# #============
# #------
# # X: Training and Blind test (BTS)
# #------
# X = all_df_wtgt[numerical_FN + categorical_FN] # training data ALL
# X_bts = blind_test_df[numerical_FN + categorical_FN] # blind test data ALL
# #X = all_df_wtgt[numerical_FN] # training numerical only
# #X_bts = blind_test_df[numerical_FN] # blind test data numerical
# #------
# # y
# #------
# y = all_df_wtgt['dst_mode'] # training data y
# y_bts = blind_test_df['dst_mode'] # blind data test y
# #X_bts_wt = blind_test_df[numerical_FN + ['dst_mode']]
# # Quick check
# #(X['ligand_affinity_change']==0).sum() == (X['ligand_distance']>10).sum()
# for i in range(len(cols_to_mask)):
# ind = i+1
# print('\nindex:', i, '\nind:', ind)
# print('\nMask count check:'
# , (my_df_ml[cols_to_mask[i]]==0).sum() == (my_df_ml['ligand_distance']>10).sum()
# )
# print('Original Data\n', Counter(y)
# , 'Data dim:', X.shape)
###############################################################################
###############################################################################
#==================================== #====================================
# ML data: Train test split [COMPLETE data]: scaling law # ML data: Train test split: SL
# with stratification # with stratification
# 1-blind test : training_data for CV # 1-blind test : training_data for CV
# 1/sqrt(columns) : blind test # 1/sqrt(columns) : blind test
#===================================== #===========================================
x_features = training_df[all_featuresN]
# features: all_df or
x_features = training_df[numerical_FN + categorical_FN]
y_target = training_df['dst_mode'] y_target = training_df['dst_mode']
# sanity check # sanity check
@ -650,9 +629,12 @@ def setvars(gene,drug):
x_ncols = len(x_features.columns) x_ncols = len(x_features.columns)
print('\nNo. of columns for x_features:', x_ncols) print('\nNo. of columns for x_features:', x_ncols)
# NEED It for scaling law split # NEED It for scaling law split
#https://towardsdatascience.com/finally-why-we-use-an-80-20-split-for-training-and-test-data-plus-an-alternative-method-oh-yes-edc77e96295d
else: else:
sys.exit('\nFAIL: x_features has target variable included. FIX it and rerun!') sys.exit('\nFAIL: x_features has target variable included. FIX it and rerun!')
#-------------------
# train-test split
#-------------------
sl_test_size = 1/np.sqrt(x_ncols) sl_test_size = 1/np.sqrt(x_ncols)
train = 1 - sl_test_size train = 1 - sl_test_size
@ -668,15 +650,64 @@ def setvars(gene,drug):
yc2 = Counter(y_bts) yc2 = Counter(y_bts)
yc2_ratio = yc2[0]/yc2[1] yc2_ratio = yc2[0]/yc2[1]
###############################################################################
#======================================================
# Determine categorical and numerical features
#======================================================
numerical_cols = X.select_dtypes(include=['int64', 'float64']).columns
numerical_cols
categorical_cols = X.select_dtypes(include=['object', 'bool']).columns
categorical_cols
################################################################################
# IMPORTANT sanity checks
if len(X.columns) == len(X_evolFN) + len(X_stability_FN) + len(X_affinityFN) + len(X_resprop_FN) + len(X_genomicFN):
print('\nPASS: ML data with input features, training and test generated...'
, '\n\nTotal no. of input features:' , len(X.columns)
, '\n--------No. of numerical features:' , len(numerical_cols)
, '\n--------No. of categorical features:' , len(categorical_cols)
, '\n\nTotal no. of evolutionary features:' , len(X_evolFN)
, '\n\nTotal no. of stability features:' , len(X_stability_FN)
, '\n--------Common stabilty cols:' , len(X_common_stability_Fnum)
, '\n--------Foldx cols:' , len(X_foldX_Fnum)
, '\n\nTotal no. of affinity features:' , len(X_affinityFN)
, '\n--------Common affinity cols:' , len(common_affinity_Fnum)
, '\n--------Gene specific affinity cols:' , len(gene_affinity_colnames)
, '\n\nTotal no. of residue level features:', len(X_resprop_FN)
, '\n--------AA index cols:' , len(X_aaindex_Fnum)
, '\n--------Residue Prop cols:' , len(X_str_Fnum)
, '\n--------AA change Prop cols:' , len(X_aap_Fcat)
, '\n\nTotal no. of genomic features:' , len(X_genomicFN)
, '\n--------MAF+OR cols:' , len(X_gn_mafor_Fnum)
, '\n--------Lineage cols:' , len(X_gn_linegae_Fnum)
, '\n--------Other cols:' , len(X_gn_Fcat)
)
else:
print('\nFAIL: numbers mismatch'
, '\nExpected:',len(X_evolFN) + len(X_stability_FN) + len(X_affinityFN) + len(X_resprop_FN) + len(X_genomicFN)
, '\nGot:', len(X.columns))
sys.exit()
###############################################################################
print('\n-------------------------------------------------------------' print('\n-------------------------------------------------------------'
, '\nSuccessfully split data with stratification according to scaling law [COMPLETE data]: 1/sqrt(x_ncols)' , '\nSuccessfully split data: ALL features'
, '\nInput features data size:', x_features.shape , '\nactual values: training set'
, '\nTrain data size:', X.shape , '\nSplit:', tts_split
, '\nTest data size:', X_bts.shape #, '\nimputed values: blind test set'
, '\n\nTotal data size:', len(X) + len(X_bts)
, '\n\nTrain data size:', X.shape
, '\ny_train numbers:', yc1 , '\ny_train numbers:', yc1
, '\ny_train ratio:',yc1_ratio
, '\n' , '\n\nTest data size:', X_bts.shape
, '\ny_test_numbers:', yc2 , '\ny_test_numbers:', yc2
, '\n\ny_train ratio:',yc1_ratio
, '\ny_test ratio:', yc2_ratio , '\ny_test ratio:', yc2_ratio
, '\n-------------------------------------------------------------' , '\n-------------------------------------------------------------'
) )
@ -775,3 +806,8 @@ def setvars(gene,drug):
############################################################################### ###############################################################################
# TODO: Find over and undersampling JUST for categorical data # TODO: Find over and undersampling JUST for categorical data
###########################################################################
print('\n#################################################################'
, '\nDim of X for gene:', gene.lower(), '\n', X.shape
, '\n###############################################################')

View file

@ -34,7 +34,11 @@ def setvars(gene,drug):
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
from sklearn.pipeline import Pipeline, make_pipeline from sklearn.pipeline import Pipeline, make_pipeline
import argparse
import re
#%% GLOBALS #%% GLOBALS
tts_split = "sl"
rs = {'random_state': 42} rs = {'random_state': 42}
njobs = {'n_jobs': 10} njobs = {'n_jobs': 10}
@ -57,11 +61,9 @@ def setvars(gene,drug):
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)} mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
jacc_score_fn = {'jcc': make_scorer(jaccard_score)} jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
#%% FOR LATER: Combine ED logo data #%% FOR LATER: Combine ED logo data
########################################################################### ###########################################################################
rs = {'random_state': 42}
njobs = {'n_jobs': 10}
homedir = os.path.expanduser("~") homedir = os.path.expanduser("~")
geneL_basic = ['pnca'] geneL_basic = ['pnca']
@ -422,118 +424,31 @@ def setvars(gene,drug):
#========================== #==========================
my_df_ml = my_df.copy() my_df_ml = my_df.copy()
#%% Build X: input for ML # Build column names to mask for affinity chanhes
common_cols_stabiltyN = ['ligand_distance'
, 'ligand_affinity_change'
, 'duet_stability_change'
, 'ddg_foldx'
, 'deepddg'
, 'ddg_dynamut2'
, 'mmcsm_lig'
, 'contacts']
# Build stability columns ~ gene
if gene.lower() in geneL_basic: if gene.lower() in geneL_basic:
X_stabilityN = common_cols_stabiltyN #X_stabilityN = common_cols_stabiltyN
gene_affinity_colnames = []# not needed as its the common ones
cols_to_mask = ['ligand_affinity_change'] cols_to_mask = ['ligand_affinity_change']
if gene.lower() in geneL_ppi2: if gene.lower() in geneL_ppi2:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_ppi2_affinity' , 'interface_dist'] gene_affinity_colnames = ['mcsm_ppi2_affinity', 'interface_dist']
geneL_ppi2_st_cols = ['mcsm_ppi2_affinity', 'interface_dist'] #X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity'] cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity']
if gene.lower() in geneL_na: if gene.lower() in geneL_na:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity'] gene_affinity_colnames = ['mcsm_na_affinity']
geneL_na_st_cols = ['mcsm_na_affinity'] #X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity'] cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity']
if gene.lower() in geneL_na_ppi2: if gene.lower() in geneL_na_ppi2:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist'] gene_affinity_colnames = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
geneL_na_ppi2_st_cols = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist'] #X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity'] cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity']
X_foldX_cols = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss'
]
X_str = ['rsa'
#, 'asa'
, 'kd_values'
, 'rd_values']
X_ssFN = X_stabilityN + X_str + X_foldX_cols
X_evolFN = ['consurf_score'
, 'snap2_score'
, 'provean_score']
X_genomic_mafor = ['maf'
, 'logorI'
# , 'or_rawI'
# , 'or_mychisq'
# , 'or_logistic'
# , 'or_fisher'
# , 'pval_fisher'
]
X_genomic_linegae = ['lineage_proportion'
, 'dist_lineage_proportion'
#, 'lineage' # could be included as a category but it has L2;L4 formatting
, 'lineage_count_all'
, 'lineage_count_unique'
]
X_genomicFN = X_genomic_mafor + X_genomic_linegae
X_aaindexFN = list(aa_df_cols)
print('\nTotal no. of features for aaindex:', len(X_aaindexFN))
# numerical feature names
numerical_FN = X_ssFN + X_evolFN + X_genomicFN + X_aaindexFN
# categorical feature names
categorical_FN = ['ss_class'
# , 'wt_prop_water'
# , 'mut_prop_water'
# , 'wt_prop_polarity'
# , 'mut_prop_polarity'
# , 'wt_calcprop'
# , 'mut_calcprop'
, 'aa_prop_change'
, 'electrostatics_change'
, 'polarity_change'
, 'water_change'
, 'drtype_mode_labels' # beware then you can't use it to predict [USED it for uq_v1, not v2]
, 'active_site' #[didn't use it for uq_v1]
#, 'gene_name' # will be required for the combined stuff
]
#----------------------------------------------
# count numerical and categorical features
#----------------------------------------------
print('\nNo. of numerical features:', len(numerical_FN)
, '\nNo. of categorical features:', len(categorical_FN))
#======================= #=======================
# Masking columns: # Masking columns:
# (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10 # (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
#======================= #=======================
# my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts()
# my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
# my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0
# (my_df_ml['ligand_affinity_change'] == 0).sum()
my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts() my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts()
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts() my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts() my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts()
@ -544,18 +459,148 @@ def setvars(gene,drug):
mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask] mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask]
#===================================================
# write file for check # write file for check
mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True) mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True)
mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv') mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv')
#===================================================
###############################################################################
#%% Feature groups (FG): Build X for Input ML
############################################################################
#===========================
# FG1: Evolutionary features
#===========================
X_evolFN = ['consurf_score'
, 'snap2_score'
, 'provean_score']
##################################################################### ###############################################################################
#========================
# FG2: Stability features
#========================
#--------
# common
#--------
X_common_stability_Fnum = [
'duet_stability_change'
, 'ddg_foldx'
, 'deepddg'
, 'ddg_dynamut2'
, 'contacts']
#--------
# FoldX
#--------
X_foldX_Fnum = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss']
X_stability_FN = X_common_stability_Fnum + X_foldX_Fnum
###############################################################################
#===================
# FG3: Affinity features
#===================
common_affinity_Fnum = ['ligand_distance'
, 'ligand_affinity_change'
, 'mmcsm_lig']
# if gene.lower() in geneL_basic:
# X_affinityFN = common_affinity_Fnum
# else:
# X_affinityFN = common_affinity_Fnum + gene_affinity_colnames
X_affinityFN = common_affinity_Fnum + gene_affinity_colnames
###############################################################################
#============================
# FG4: Residue level features
#============================
#-----------
# AA index
#-----------
X_aaindex_Fnum = list(aa_df_cols)
print('\nTotal no. of features for aaindex:', len(X_aaindex_Fnum))
#-----------------
# surface area
# depth
# hydrophobicity
#-----------------
X_str_Fnum = ['rsa'
#, 'asa'
, 'kd_values'
, 'rd_values']
#---------------------------
# Other aa properties
# active site indication
#---------------------------
X_aap_Fcat = ['ss_class'
# , 'wt_prop_water'
# , 'mut_prop_water'
# , 'wt_prop_polarity'
# , 'mut_prop_polarity'
# , 'wt_calcprop'
# , 'mut_calcprop'
, 'aa_prop_change'
, 'electrostatics_change'
, 'polarity_change'
, 'water_change'
, 'active_site']
X_resprop_FN = X_aaindex_Fnum + X_str_Fnum + X_aap_Fcat
###############################################################################
#========================
# FG5: Genomic features
#========================
X_gn_mafor_Fnum = ['maf'
#, 'logorI'
# , 'or_rawI'
# , 'or_mychisq'
# , 'or_logistic'
# , 'or_fisher'
# , 'pval_fisher'
]
X_gn_linegae_Fnum = ['lineage_proportion'
, 'dist_lineage_proportion'
#, 'lineage' # could be included as a category but it has L2;L4 formatting
, 'lineage_count_all'
, 'lineage_count_unique'
]
# X_gn_Fcat = ['drtype_mode_labels' # beware then you can't use it to predict [USED it for uq_v1, not v2]
# #, 'gene_name' # will be required for the combined stuff
# ]
X_gn_Fcat = []
X_genomicFN = X_gn_mafor_Fnum + X_gn_linegae_Fnum + X_gn_Fcat
###############################################################################
#========================
# FG6 collapsed: Structural : Atability + Affinity + ResidueProp
#========================
X_structural_FN = X_stability_FN + X_affinityFN + X_resprop_FN
###############################################################################
#========================
# BUILDING all features
#========================
all_featuresN = X_evolFN + X_structural_FN + X_genomicFN
###############################################################################
#%% Define training and test data
#================================================================ #================================================================
# Training and BLIND test set: scaling law split # Training and BLIND test set: scaling law split
#https://towardsdatascience.com/finally-why-we-use-an-80-20-split-for-training-and-test-data-plus-an-alternative-method-oh-yes-edc77e96295d #https://towardsdatascience.com/finally-why-we-use-an-80-20-split-for-training-and-test-data-plus-an-alternative-method-oh-yes-edc77e96295d
# dst with actual values : training set
# dst with imputed values : THROW AWAY [unrepresentative]
# test data size ~ 1/sqrt(features NOT including target variable) # test data size ~ 1/sqrt(features NOT including target variable)
#================================================================ #================================================================
my_df_ml[drug].isna().sum() my_df_ml[drug].isna().sum()
# blind_test_df = my_df_ml[my_df_ml[drug].isna()] # blind_test_df = my_df_ml[my_df_ml[drug].isna()]
# blind_test_df.shape # blind_test_df.shape
@ -567,79 +612,13 @@ def setvars(gene,drug):
training_df['dst_mode'].value_counts() training_df['dst_mode'].value_counts()
#################################################################### ####################################################################
#====================================
############################################################################### # ML data: Train test split: SL
###############################################################################
# #%% extracting dfs based on numerical, categorical column names
# #----------------------------------
# # WITHOUT the target var included
# #----------------------------------
# num_df = training_df[numerical_FN]
# num_df.shape
# cat_df = training_df[categorical_FN]
# cat_df.shape
# all_df = training_df[numerical_FN + categorical_FN]
# all_df.shape
# #------------------------------
# # WITH the target var included:
# #'wtgt': with target
# #------------------------------
# # drug and dst_mode should be the same thing
# num_df_wtgt = training_df[numerical_FN + ['dst_mode']]
# num_df_wtgt.shape
# cat_df_wtgt = training_df[categorical_FN + ['dst_mode']]
# cat_df_wtgt.shape
# all_df_wtgt = training_df[numerical_FN + categorical_FN + ['dst_mode']]
# all_df_wtgt.shape
#%%########################################################################
# #============
# # ML data: OLD
# #============
# #------
# # X: Training and Blind test (BTS)
# #------
# X = all_df_wtgt[numerical_FN + categorical_FN] # training data ALL
# X_bts = blind_test_df[numerical_FN + categorical_FN] # blind test data ALL
# #X = all_df_wtgt[numerical_FN] # training numerical only
# #X_bts = blind_test_df[numerical_FN] # blind test data numerical
# #------
# # y
# #------
# y = all_df_wtgt['dst_mode'] # training data y
# y_bts = blind_test_df['dst_mode'] # blind data test y
# #X_bts_wt = blind_test_df[numerical_FN + ['dst_mode']]
# # Quick check
# #(X['ligand_affinity_change']==0).sum() == (X['ligand_distance']>10).sum()
# for i in range(len(cols_to_mask)):
# ind = i+1
# print('\nindex:', i, '\nind:', ind)
# print('\nMask count check:'
# , (my_df_ml[cols_to_mask[i]]==0).sum() == (my_df_ml['ligand_distance']>10).sum()
# )
# print('Original Data\n', Counter(y)
# , 'Data dim:', X.shape)
###############################################################################
###############################################################################
#===========================================
# ML data: Train test split:scaling law
# with stratification # with stratification
# 1-blind test : training_data for CV # 1-blind test : training_data for CV
# 1/sqrt(columns) : blind test # 1/sqrt(columns) : blind test
#=========================================== #===========================================
x_features = training_df[all_featuresN]
# features: all_df or
x_features = training_df[numerical_FN + categorical_FN]
y_target = training_df['dst_mode'] y_target = training_df['dst_mode']
# sanity check # sanity check
@ -648,9 +627,12 @@ def setvars(gene,drug):
x_ncols = len(x_features.columns) x_ncols = len(x_features.columns)
print('\nNo. of columns for x_features:', x_ncols) print('\nNo. of columns for x_features:', x_ncols)
# NEED It for scaling law split # NEED It for scaling law split
#https://towardsdatascience.com/finally-why-we-use-an-80-20-split-for-training-and-test-data-plus-an-alternative-method-oh-yes-edc77e96295d
else: else:
sys.exit('\nFAIL: x_features has target variable included. FIX it and rerun!') sys.exit('\nFAIL: x_features has target variable included. FIX it and rerun!')
#-------------------
# train-test split
#-------------------
sl_test_size = 1/np.sqrt(x_ncols) sl_test_size = 1/np.sqrt(x_ncols)
train = 1 - sl_test_size train = 1 - sl_test_size
@ -666,15 +648,64 @@ def setvars(gene,drug):
yc2 = Counter(y_bts) yc2 = Counter(y_bts)
yc2_ratio = yc2[0]/yc2[1] yc2_ratio = yc2[0]/yc2[1]
###############################################################################
#======================================================
# Determine categorical and numerical features
#======================================================
numerical_cols = X.select_dtypes(include=['int64', 'float64']).columns
numerical_cols
categorical_cols = X.select_dtypes(include=['object', 'bool']).columns
categorical_cols
################################################################################
# IMPORTANT sanity checks
if len(X.columns) == len(X_evolFN) + len(X_stability_FN) + len(X_affinityFN) + len(X_resprop_FN) + len(X_genomicFN):
print('\nPASS: ML data with input features, training and test generated...'
, '\n\nTotal no. of input features:' , len(X.columns)
, '\n--------No. of numerical features:' , len(numerical_cols)
, '\n--------No. of categorical features:' , len(categorical_cols)
, '\n\nTotal no. of evolutionary features:' , len(X_evolFN)
, '\n\nTotal no. of stability features:' , len(X_stability_FN)
, '\n--------Common stabilty cols:' , len(X_common_stability_Fnum)
, '\n--------Foldx cols:' , len(X_foldX_Fnum)
, '\n\nTotal no. of affinity features:' , len(X_affinityFN)
, '\n--------Common affinity cols:' , len(common_affinity_Fnum)
, '\n--------Gene specific affinity cols:' , len(gene_affinity_colnames)
, '\n\nTotal no. of residue level features:', len(X_resprop_FN)
, '\n--------AA index cols:' , len(X_aaindex_Fnum)
, '\n--------Residue Prop cols:' , len(X_str_Fnum)
, '\n--------AA change Prop cols:' , len(X_aap_Fcat)
, '\n\nTotal no. of genomic features:' , len(X_genomicFN)
, '\n--------MAF+OR cols:' , len(X_gn_mafor_Fnum)
, '\n--------Lineage cols:' , len(X_gn_linegae_Fnum)
, '\n--------Other cols:' , len(X_gn_Fcat)
)
else:
print('\nFAIL: numbers mismatch'
, '\nExpected:',len(X_evolFN) + len(X_stability_FN) + len(X_affinityFN) + len(X_resprop_FN) + len(X_genomicFN)
, '\nGot:', len(X.columns))
sys.exit()
###############################################################################
print('\n-------------------------------------------------------------' print('\n-------------------------------------------------------------'
, '\nSuccessfully split data with stratification according to scaling law: 1/sqrt(x_ncols)' , '\nSuccessfully split data: ALL features'
, '\nInput features data size:', x_features.shape , '\nactual values: training set'
, '\nTrain data size:', X.shape , '\nSplit:', tts_split
, '\nTest data size:', sl_test_size, ' ', X_bts.shape #, '\nimputed values: blind test set'
, '\n\nTotal data size:', len(X) + len(X_bts)
, '\n\nTrain data size:', X.shape
, '\ny_train numbers:', yc1 , '\ny_train numbers:', yc1
, '\ny_train ratio:',yc1_ratio
, '\n' , '\n\nTest data size:', X_bts.shape
, '\ny_test_numbers:', yc2 , '\ny_test_numbers:', yc2
, '\n\ny_train ratio:',yc1_ratio
, '\ny_test ratio:', yc2_ratio , '\ny_test ratio:', yc2_ratio
, '\n-------------------------------------------------------------' , '\n-------------------------------------------------------------'
) )
@ -773,3 +804,8 @@ def setvars(gene,drug):
############################################################################### ###############################################################################
# TODO: Find over and undersampling JUST for categorical data # TODO: Find over and undersampling JUST for categorical data
###########################################################################
print('\n#################################################################'
, '\nDim of X for gene:', gene.lower(), '\n', X.shape
, '\n###############################################################')

View file

@ -55,9 +55,8 @@ OutFile_suffix = '7030'
outdir_ml = outdir + 'ml/tts_7030/' outdir_ml = outdir + 'ml/tts_7030/'
print('\nOutput directory:', outdir_ml) print('\nOutput directory:', outdir_ml)
outFile_wf = outdir_ml + gene.lower() + '_baselineC_' + OutFile_suffix + '.csv' #outFile_wf = outdir_ml + gene.lower() + '_baselineC_' + OutFile_suffix + '.csv'
#outFile_lf = outdir_ml + gene.lower() + '_baselineC_ext_' + OutFile_suffix + '.csv' outFile_wf = outdir_ml + gene.lower() + '_baselineC_noOR' + OutFile_suffix + '.csv'
#%% Running models ############################################################ #%% Running models ############################################################
print('\n#####################################################################\n' print('\n#####################################################################\n'
, '\nStarting--> Running ML analysis: Baseline modes (No FS)' , '\nStarting--> Running ML analysis: Baseline modes (No FS)'
@ -92,10 +91,24 @@ paramD = {
, 'resampling_type' : 'rouC'} , 'resampling_type' : 'rouC'}
} }
# Initial run to get the dict containing CV, BT and metadata DFs ##==============================================================================
mmD = {} ## Dict with no CV BT formatted df
## mmD = {}
## for k, v in paramD.items():
## # print(mmD[k])
## scores_7030D = MultModelsCl(**paramD[k]
## , tts_split_type = tts_split_7030
## , skf_cv = skf_cv
## , blind_test_df = X_bts
## , blind_test_target = y_bts
## , add_cm = True
## , add_yn = True
## , return_formatted_output = False)
## mmD[k] = scores_7030D
##==============================================================================
## Initial run to get the dict of dicts for each sampling type containing CV, BT and metadata DFs
mmDD = {}
for k, v in paramD.items(): for k, v in paramD.items():
# print(mmD[k])
scores_7030D = MultModelsCl(**paramD[k] scores_7030D = MultModelsCl(**paramD[k]
, tts_split_type = tts_split_7030 , tts_split_type = tts_split_7030
, skf_cv = skf_cv , skf_cv = skf_cv
@ -104,23 +117,25 @@ for k, v in paramD.items():
, add_cm = True , add_cm = True
, add_yn = True , add_yn = True
, return_formatted_output = True) , return_formatted_output = True)
mmD[k] = scores_7030D mmDD[k] = scores_7030D
# Extracting the dfs from within the dict and concatenating to output as one df # Extracting the dfs from within the dict and concatenating to output as one df
for k, v in mmD.items(): for k, v in mmDD.items():
out_wf_7030 = pd.concat(mmD, ignore_index = True) out_wf_7030 = pd.concat(mmDD, ignore_index = True)
out_wf_7030f = out_wf_7030.sort_values(by = ['resampling', 'source_data', 'MCC'], ascending = [True, True, False], inplace = False)
print('\n######################################################################' print('\n######################################################################'
, '\nEnd--> Successfully generated output DF for Multiple classifiers (baseline models)' , '\nEnd--> Successfully generated output DF for Multiple classifiers (baseline models)'
, '\nGene:', gene.lower() , '\nGene:', gene.lower()
, '\nDrug:', drug , '\nDrug:', drug
, '\noutput file:', outFile_wf , '\noutput file:', outFile_wf
, '\nDim of output:', out_wf_7030.shape , '\nDim of output:', out_wf_7030f.shape
, '\n######################################################################') , '\n######################################################################')
############################################################################### ###############################################################################
#==================== #====================
# Write output file # Write output file
#==================== #====================
#out_wf_7030.to_csv(outFile_wf, index = False) out_wf_7030f.to_csv(outFile_wf, index = False)
print('\nFile successfully written:', outFile_wf) print('\nFile successfully written:', outFile_wf)
############################################################################### ###############################################################################

View file

@ -92,7 +92,7 @@ gene = args.gene
#================== #==================
# other vars # other vars
#================== #==================
tts_split = '70/30' tts_split = '70_30'
OutFile_suffix = '7030_FS' OutFile_suffix = '7030_FS'
############################################################################### ###############################################################################
#================== #==================
@ -116,7 +116,8 @@ from FS import fsgs
#================== #==================
outdir_ml = outdir + 'ml/tts_7030/fs/' outdir_ml = outdir + 'ml/tts_7030/fs/'
print('\nOutput directory:', outdir_ml) print('\nOutput directory:', outdir_ml)
OutFileFS = outdir_ml + gene.lower() + '_FS_' + OutFile_suffix + '.json' #OutFileFS = outdir_ml + gene.lower() + '_FS' + OutFile_suffix + '.json'
OutFileFS = outdir_ml + gene.lower() + '_FS_noOR' + OutFile_suffix + '.json'
############################################################################ ############################################################################
@ -153,17 +154,17 @@ models = [('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
, ('Extra Tree' , ExtraTreeClassifier(**rs) ) , ('Extra Tree' , ExtraTreeClassifier(**rs) )
, ('Extra Trees' , ExtraTreesClassifier(**rs) ) , ('Extra Trees' , ExtraTreesClassifier(**rs) )
, ('Gradient Boosting' , GradientBoostingClassifier(**rs) ) , ('Gradient Boosting' , GradientBoostingClassifier(**rs) )
#, ('Gaussian NB' , GaussianNB() ) ##, ('Gaussian NB' , GaussianNB() )
#, ('Gaussian Process' , GaussianProcessClassifier(**rs) ) ##, ('Gaussian Process' , GaussianProcessClassifier(**rs) )
#, ('K-Nearest Neighbors' , KNeighborsClassifier() ) ##, ('K-Nearest Neighbors' , KNeighborsClassifier() )
, ('LDA' , LinearDiscriminantAnalysis() ) , ('LDA' , LinearDiscriminantAnalysis() )
, ('Logistic Regression' , LogisticRegression(**rs) ) , ('Logistic Regression' , LogisticRegression(**rs) )
, ('Logistic RegressionCV' , LogisticRegressionCV(cv = 3, **rs)) , ('Logistic RegressionCV' , LogisticRegressionCV(cv = 3, **rs))
#, ('MLP' , MLPClassifier(max_iter = 500, **rs) ) ##, ('MLP' , MLPClassifier(max_iter = 500, **rs) )
#, ('Multinomial' , MultinomialNB() ) ##, ('Multinomial' , MultinomialNB() )
#, ('Naive Bayes' , BernoulliNB() ) ##, ('Naive Bayes' , BernoulliNB() )
, ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) ) , ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) )
#, ('QDA' , QuadraticDiscriminantAnalysis() ) ##, ('QDA' , QuadraticDiscriminantAnalysis() )
, ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000 ) ) , ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000 ) )
, ('Random Forest2' , RandomForestClassifier(min_samples_leaf = 5 , ('Random Forest2' , RandomForestClassifier(min_samples_leaf = 5
, n_estimators = 1000 , n_estimators = 1000
@ -174,10 +175,10 @@ models = [('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
, max_features = 'auto') ) , max_features = 'auto') )
, ('Ridge Classifier' , RidgeClassifier(**rs) ) , ('Ridge Classifier' , RidgeClassifier(**rs) )
, ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 3) ) , ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 3) )
#, ('SVC' , SVC(**rs) ) ##, ('SVC' , SVC(**rs) )
, ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) ) , ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) )
# , ('XGBoost' , XGBClassifier(**rs, **njobs, verbosity = 3 ## , ('XGBoost' , XGBClassifier(**rs, **njobs, verbosity = 3
# , use_label_encoder = False) ) ## , use_label_encoder = False) )
] ]
print('\n#####################################################################' print('\n#####################################################################'

View file

@ -1,11 +1,13 @@
================================= ########################################################################
# Split: 70/30
#70/30
########################################################################
=-----------------------------------=
# All features including AA index # All features including AA index
# Date: 22/06/2022 # [WITH OR]
# captures error: 2>$1 =-----------------------------------=
# omitted drtype_labels time ./run_7030.py -g pncA -d pyrazinamide 2>&1 | tee log_pnca_7030.txt #d
=================================
time ./run_7030.py -g pncA -d pyrazinamide 2>&1 | tee log_pnca_7030.txt
time ./run_7030.py -g embB -d ethambutol 2>&1 | tee log_embb_7030.txt time ./run_7030.py -g embB -d ethambutol 2>&1 | tee log_embb_7030.txt
time ./run_7030.py -g katG -d isoniazid 2>&1 | tee log_katg_7030.txt time ./run_7030.py -g katG -d isoniazid 2>&1 | tee log_katg_7030.txt
time ./run_7030.py -g rpoB -d rifampicin 2>&1 | tee log_rpob_7030.txt time ./run_7030.py -g rpoB -d rifampicin 2>&1 | tee log_rpob_7030.txt
@ -14,71 +16,155 @@ time ./run_7030.py -g alr -d cycloserine 2>&1 | tee log_alr_7030.txt
# alr: # ERROR, as expected, too few values! # alr: # ERROR, as expected, too few values!
# gid: problems # gid: problems
########################################################################
================================= =-----------------------------------=
# Split: 80/20
# All features including AA index # All features including AA index
# Date: 17/05/2022, 18:48 # [WITHOUT OR] **DONE
# captures error: 2>$1 #------------------------------------=
================================= time ./run_7030.py -g pncA -d pyrazinamide 2>&1 | tee log_pnca_7030_noOR.txt
time ./run_7030.py -g embB -d ethambutol 2>&1 | tee log_embb_7030_noOR.txt
time ./run_7030.py -g katG -d isoniazid 2>&1 | tee log_katg_7030_noOR.txt
time ./run_7030.py -g rpoB -d rifampicin 2>&1 | tee log_rpob_7030_noOR.txt
time ./run_7030.py -g gid -d streptomycin 2>&1 | tee log_gid_7030_noOR.txt
time ./run_7030.py -g alr -d cycloserine 2>&1 | tee log_alr_7030_noOR.txt
########################################################################
# 80/20
######################################################################## ########################################################################
================================= =-----------------------------------=
# Split: scaling law
# All features including AA index # All features including AA index
# Date: 17/05/2022, 18:48 # [WITH OR]
# captures error: 2>$1 =-----------------------------------=
================================= time ./run_8020.py -g pncA -d pyrazinamide 2>&1 | tee log_pnca_8020.txt
time ./run_8020.py -g embB -d ethambutol 2>&1 | tee log_embb_8020.txt
time ./run_8020.py -g katG -d isoniazid 2>&1 | tee log_katg_8020.txt
time ./run_8020.py -g rpoB -d rifampicin 2>&1 | tee log_rpob_8020.txt
time ./run_8020.py -g gid -d streptomycin 2>&1 | tee log_gid_8020.txt
time ./run_8020.py -g alr -d cycloserine 2>&1 | tee log_alr_8020.txt
######################################################################## =-----------------------------------=
=================================
# Split: REVERSE training
# imputed values: training set
# actual values: blind set
# All features including AA index # All features including AA index
# Date: 18/05/2022 # [WITHOUT OR] **DONE
# captures error: 2>$1 real 0m1.099s
================================= user 0m1.308s
sys 0m1.474s
=-----------------------------------=
time ./run_8020.py -g pncA -d pyrazinamide 2>&1 | tee log_pnca_8020_noOR.txt
time ./run_8020.py -g embB -d ethambutol 2>&1 | tee log_embb_8020_noOR.txt
time ./run_8020.py -g katG -d isoniazid 2>&1 | tee log_katg_8020_noOR.txt
time ./run_8020.py -g rpoB -d rifampicin 2>&1 | tee log_rpob_8020_noOR.txt
time ./run_8020.py -g gid -d streptomycin 2>&1 | tee log_gid_8020_noOR.txt
time ./run_8020.py -g alr -d cycloserine 2>&1 | tee log_alr_8020_noOR.txt
######################################################################## ########################################################################
# COMPLETE Data: actual + na i.e imputed
# SL
######################################################################## ########################################################################
================================= =-----------------------------------=
# Split: 70/30 [COMPLETE DATA]
# All features including AA index # All features including AA index
# Date: 18/05/2022 =-----------------------------------=
# captures error: 2>$1
=================================
########################################################################
=================================
# Split: 80/20 [COMPLETE DATA]
=-----------------------------------=
# All features including AA index # All features including AA index
# Date: 18/05/2022 # [WITHOUT OR]
# captures error: 2>$1 =-----------------------------------=
================================= time ./run_sl.py -g pncA -d pyrazinamide 2>&1 | tee log_pnca_sl_noOR.txt
time ./run_sl.py -g embB -d ethambutol 2>&1 | tee log_embb_sl_noOR.txt
time ./run_sl.py -g katG -d isoniazid 2>&1 | tee log_katg_sl_noOR.txt
time ./run_sl.py -g rpoB -d rifampicin 2>&1 | tee log_rpob_sl_noOR.txt
time ./run_sl.py -g gid -d streptomycin 2>&1 | tee log_gid_sl_noOR.txt
time ./run_sl.py -g alr -d cycloserine 2>&1 | tee log_alr_sl_noOR.txt
================================= ########################################################################
# Split: scaling law [COMPLETE DATA]
########################################################################
########################################################################
###################### COMPLETE DATA ##############################
########################################################################
########################################################################
########################################################################
#70/30
########################################################################
=-----------------------------------=
# All features including AA index # All features including AA index
# Date: 18/05/2022 # [WITHOUT OR]
# captures error: 2>$1 #------------------------------------=
================================= time ./run_cd_7030.py -g pncA -d pyrazinamide 2>&1 | tee log_pnca_cd_7030_noOR.txt
time ./run_cd_7030.py -g embB -d ethambutol 2>&1 | tee log_embb_cd_7030_noOR.txt
time ./run_cd_7030.py -g katG -d isoniazid 2>&1 | tee log_katg_cd_7030_noOR.txt
time ./run_cd_7030.py -g rpoB -d rifampicin 2>&1 | tee log_rpob_cd_7030_noOR.txt
time ./run_cd_7030.py -g gid -d streptomycin 2>&1 | tee log_gid_cd_7030_noOR.txt
time ./run_cd_7030.py -g alr -d cycloserine 2>&1 | tee log_alr_cd_7030_noOR.txt
######################################################################## ########################################################################
# 80/20
########################################################################
=-----------------------------------=
# All features including AA index
# [WITHOUT OR]
#------------------------------------=
time ./run_cd_8020.py -g pncA -d pyrazinamide 2>&1 | tee log_pnca_cd_8020_noOR.txt
time ./run_cd_8020.py -g embB -d ethambutol 2>&1 | tee log_embb_cd_8020_noOR.txt
time ./run_cd_8020.py -g katG -d isoniazid 2>&1 | tee log_katg_cd_8020_noOR.txt
time ./run_cd_8020.py -g rpoB -d rifampicin 2>&1 | tee log_rpob_cd_8020_noOR.txt
time ./run_cd_8020.py -g gid -d streptomycin 2>&1 | tee log_gid_cd_8020_noOR.txt
time ./run_cd_8020.py -g alr -d cycloserine 2>&1 | tee log_alr_cd_8020_noOR.txt
########################################################################
# SL
########################################################################
=-----------------------------------=
# All features including AA index
# [WITHOUT OR]
#------------------------------------=
time ./run_cd_sl.py -g pncA -d pyrazinamide 2>&1 | tee log_pnca_cd_sl_noOR.txt
time ./run_cd_sl.py -g embB -d ethambutol 2>&1 | tee log_embb_cd_sl_noOR.txt
time ./run_cd_sl.py -g katG -d isoniazid 2>&1 | tee log_katg_cd_sl_noOR.txt
time ./run_cd_sl.py -g rpoB -d rifampicin 2>&1 | tee log_rpob_cd_sl_noOR.txt
time ./run_cd_sl.py -g gid -d streptomycin 2>&1 | tee log_gid_cd_sl_noOR.txt
time ./run_cd_sl.py -g alr -d cycloserine 2>&1 | tee log_alr_cd_sl_noOR.txt
########################################################################
########################################################################
########################################################################
###################### Feature Selection ##########################
######################################################################## ########################################################################
######################################################################## ########################################################################
# running feature selection # 7030
# Split:70/30
time ./run_FS.py -g pncA -d pyrazinamide 2>&1 | tee log_FS_pnca_7030.txt time ./run_FS.py -g pncA -d pyrazinamide 2>&1 | tee log_FS_pnca_7030.txt
real 338m26.705s
user 1946m12.173s
sys 189m40.122s
time ./run_FS_7030.py -g pncA -d pyrazinamide 2>&1 | tee log_FS_pnca_7030_noOR.txt

View file

@ -100,3 +100,5 @@ mmDF3 = MultModelsCl(input_df = X_smnc
#================= #=================
# output from function call # output from function call
ProcessMultModelsCl(mmD) ProcessMultModelsCl(mmD)
ProcessMultModelsCl(testD)