updated figure for multi mut plot
This commit is contained in:
parent
968b57105f
commit
e1da853cf1
2 changed files with 112 additions and 128 deletions
|
@ -1,177 +1,149 @@
|
|||
#!/usr/bin/env Rscript
|
||||
#########################################################
|
||||
# TASK: producing logo-type plot showing
|
||||
# multiple muts per position coloured by aa property
|
||||
#########################################################
|
||||
#=======================================================================
|
||||
# working dir and loading libraries
|
||||
getwd()
|
||||
#setwd("~/Documents/git/LSHTM_Y1_PNCA/combined_v3/logo_plot") # wor_mychisqk
|
||||
setwd("~/git/LSHTM_Y1_PNCA/combined_v3/logo_plot") # thinkpad
|
||||
#setwd("/Users/tanu/git/LSHTM_Y1_PNCA/combined_v3/logo_plot") # mac
|
||||
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
#########################################################
|
||||
# 1: Installing and loading required packages
|
||||
#########################################################
|
||||
source("Header_TT.R")
|
||||
#library(ggplot2)
|
||||
#library(data.table)
|
||||
#library(dplyr)
|
||||
|
||||
source("../../Header_TT.R")
|
||||
#===========
|
||||
# input
|
||||
#===========
|
||||
source("combining_dfs_plotting.R")
|
||||
|
||||
#source("barplot_colour_function.R")
|
||||
#===========
|
||||
# output
|
||||
#===========
|
||||
|
||||
#install.packages("ggseqlogo")
|
||||
logo_multiple_muts = "logo_multiple_muts.svg"
|
||||
plot_logo_multiple_muts = paste0(plotdir,"/", logo_multiple_muts)
|
||||
|
||||
library(ggseqlogo)
|
||||
##########################################################################
|
||||
|
||||
|
||||
########################################################################
|
||||
# end of loading libraries and functions #
|
||||
########################################################################
|
||||
setwd("/home/tanu/git/LSHTM_analysis/plotting_test")
|
||||
|
||||
source("../scripts/plotting/combining_dfs_plotting.R")
|
||||
|
||||
# since we will be using df without NA, its best to delete the ones with NA
|
||||
rm(merged_df2, merged_df3)
|
||||
|
||||
|
||||
###########################
|
||||
# 3: Data for_mychisq DUET plots
|
||||
# you need merged_df3_comp
|
||||
# since these have unique SNPs
|
||||
###########################
|
||||
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df3_comp
|
||||
my_df = merged_df3 #try!
|
||||
#<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
my_df = merged_df3
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
# clear excess variables
|
||||
rm(merged_df2, merged_df2_comp, merged_df2_lig, merged_df2_comp_lig
|
||||
, merged_df3_comp, merged_df3_comp_lig
|
||||
, my_df_u, my_df_u_lig, merged_df3_lig)
|
||||
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
rownames(my_df) = my_df$Mutationinfor_mychisqmation
|
||||
#rownames(my_df) = my_df$mutation
|
||||
|
||||
c1 = unique(my_df$position) #96
|
||||
nrow(my_df) #189
|
||||
c1 = unique(my_df$position)
|
||||
nrow(my_df)
|
||||
|
||||
# get freq count of positions so you can subset freq<1
|
||||
require(data.table)
|
||||
setDT(my_df)[, occurrence := .N, by = .(position)] #189, 36
|
||||
#require(data.table)
|
||||
setDT(my_df)[, mut_pos_occurrence := .N, by = .(position)] #189, 36
|
||||
|
||||
table(my_df$position); table(my_df$occurrence)
|
||||
table(my_df$position)
|
||||
table(my_df$mut_pos_occurrence)
|
||||
|
||||
max_mut = max(table(my_df$position))
|
||||
|
||||
# extract freq_pos>1
|
||||
my_data_snp = my_df[my_df$occurrence!=1,] #144, 36
|
||||
u = unique(my_data_snp$position) #51
|
||||
my_data_snp = my_df[my_df$mut_pos_occurrence!=1,]
|
||||
u = unique(my_data_snp$position)
|
||||
max_mult_mut = max(table(my_data_snp$position))
|
||||
|
||||
if (nrow(my_data_snp) == nrow(my_df) - table(my_df$mut_pos_occurrence)[[1]] ){
|
||||
|
||||
cat("PASS: positions with multiple muts extracted"
|
||||
, "\nNo. of mutations:", nrow(my_data_snp)
|
||||
, "\nNo. of positions:", length(u)
|
||||
, "\nMax no. of muts at any position", max_mult_mut)
|
||||
}else{
|
||||
cat("FAIL: positions with multiple muts could NOT be extracted"
|
||||
, "\nExpected:",nrow(my_df) - table(my_df$mut_pos_occurrence)[[1]]
|
||||
, "\nGot:", nrow(my_data_snp) )
|
||||
}
|
||||
|
||||
cat("\nNo. of sites with only 1 mutations:", table(my_df$mut_pos_occurrence)[[1]])
|
||||
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for_mychisq plots #
|
||||
########################################################################
|
||||
|
||||
|
||||
|
||||
|
||||
#########################################################
|
||||
#Task: To generate a logo plot or_mychisq bar plot but coloured
|
||||
#aa properties.
|
||||
#step1: read mcsm file and or_mychisq file
|
||||
#step2: plot wild type positions
|
||||
#step3: plot mutants per position coloured by aa properties
|
||||
#step4: make the size of the letters/bars prop to or_mychisq if you can!
|
||||
#########################################################
|
||||
##useful links
|
||||
#https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
|
||||
#https://omarwagih.github.io/ggseqlogo/
|
||||
#https://kkdey.github.io/Logolas-pages/wor_mychisqkflow.html
|
||||
#A new sequence logo plot to highlight enrichment and depletion.
|
||||
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288878/
|
||||
|
||||
|
||||
##very good: http://www.cbs.dtu.dk/biotools/Seq2Logo-2.0/
|
||||
|
||||
|
||||
|
||||
#############
|
||||
#PLOTS: Bar plot with aa properties
|
||||
#using gglogo
|
||||
#useful links: https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
|
||||
#############
|
||||
#following example
|
||||
require(ggplot2)
|
||||
require(reshape2)
|
||||
library(gglogo)
|
||||
library(ggrepel)
|
||||
#lmf <- melt(logodf, id.var='pos')
|
||||
foo = my_data_snp[, c("position", "mutant_type","duet_scaled", "or_mychisq", "mut_prop_polarity", "mut_prop_water") ]
|
||||
#144, 6
|
||||
head(foo)
|
||||
|
||||
foo = foo[or_mychisqder(foo$position),]
|
||||
head(foo)
|
||||
|
||||
#==============
|
||||
# matrix for_mychisq mutant type
|
||||
# frequency of mutant type by position
|
||||
#==============
|
||||
table(my_data_snp$mutant_type, my_data_snp$position)
|
||||
tab = table(my_data_snp$mutant_type, my_data_snp$position)
|
||||
class(tab)
|
||||
# unclass to convert to matrix
|
||||
tab = unclass(tab)
|
||||
tab = as.matrix(tab, rownames = T)
|
||||
#should be TRUE
|
||||
is.matrix(tab)
|
||||
tab_mt = table(my_data_snp$mutant_type, my_data_snp$position)
|
||||
class(tab_mt)
|
||||
|
||||
rownames(tab) #aa
|
||||
colnames(tab) #pos
|
||||
# unclass to convert to matrix
|
||||
tab_mt = unclass(tab_mt)
|
||||
tab_mt = as.matrix(tab_mt, rownames = T)
|
||||
|
||||
#should be TRUE
|
||||
is.matrix(tab_mt)
|
||||
|
||||
rownames(tab_mt) #aa
|
||||
colnames(tab_mt) #pos
|
||||
|
||||
#**************
|
||||
# Plot 1: mutant logo
|
||||
#**************
|
||||
# generate seq logo
|
||||
p0 = ggseqlogo(tab
|
||||
p0 = ggseqlogo(tab_mt
|
||||
, method = 'custom'
|
||||
, seq_type = 'aa'
|
||||
#, col_scheme = "taylor_mychisq"
|
||||
#, col_scheme = "chemistry2"
|
||||
) +
|
||||
, seq_type = 'aa') +
|
||||
#ylab('my custom height') +
|
||||
theme(axis.text.x = element_blank()) +
|
||||
theme_logo()+
|
||||
# scale_x_continuous(breaks=1:51, parse (text = colnames(tab)) )
|
||||
scale_x_continuous(breaks = 1:ncol(tab)
|
||||
, labels = colnames(tab))+
|
||||
scale_y_continuous( breaks = 1:5
|
||||
, limits = c(0, 6))
|
||||
scale_x_continuous(breaks = 1:ncol(tab_mt)
|
||||
, labels = colnames(tab_mt))+
|
||||
scale_y_continuous( breaks = 1:max_mult_mut
|
||||
, limits = c(0, max_mult_mut))
|
||||
|
||||
p0
|
||||
|
||||
# further customisation
|
||||
|
||||
p1 = p0 + theme(legend.position = "bottom"
|
||||
p1 = p0 + theme(legend.position = "none"
|
||||
, legend.title = element_blank()
|
||||
, legend.text = element_text(size = 20)
|
||||
, axis.text.x = element_text(size = 20, angle = 90)
|
||||
, axis.text.y = element_text(size = 20, angle = 90))
|
||||
, axis.text.y = element_blank())
|
||||
p1
|
||||
|
||||
#==============
|
||||
# matrix for_mychisq wild type
|
||||
# matrix for wild type
|
||||
# frequency of wild type by position
|
||||
#==============
|
||||
tab_wt = table(my_data_snp$wild_type, my_data_snp$position); tab_wt #17, 51
|
||||
tab_wt = table(my_data_snp$wild_type, my_data_snp$position); tab_wt
|
||||
tab_wt = unclass(tab_wt)
|
||||
|
||||
#remove wt duplicates
|
||||
wt = my_data_snp[, c("position", "wild_type")] #144, 2
|
||||
wt = wt[!duplicated(wt),]#51, 2
|
||||
wt = my_data_snp[, c("position", "wild_type")]
|
||||
wt = wt[!duplicated(wt),]
|
||||
|
||||
tab_wt = table(wt$wild_type, wt$position); tab_wt # should all be 1
|
||||
rownames(tab_wt)
|
||||
rownames(tab)
|
||||
rownames(tab_wt)
|
||||
|
||||
#**************
|
||||
# Plot 2: for_mychisq wild_type
|
||||
# with custom x axis to reflect my aa positions
|
||||
# Plot 2: wild_type logo
|
||||
|
||||
#**************
|
||||
# sanity check: MUST BE TRUE
|
||||
# for_mychisq the cor_mychisqrectnes of the x axis
|
||||
identical(colnames(tab), colnames(tab_wt))
|
||||
identical(ncol(tab), ncol(tab_wt))
|
||||
|
||||
identical(colnames(tab_mt), colnames(tab_wt))
|
||||
identical(ncol(tab_mt), ncol(tab_wt))
|
||||
|
||||
p2 = ggseqlogo(tab_wt
|
||||
, method = 'custom'
|
||||
|
@ -184,16 +156,20 @@ p2 = ggseqlogo(tab_wt
|
|||
, axis.text.y = element_blank()) +
|
||||
theme_logo() +
|
||||
scale_x_continuous(breaks = 1:ncol(tab_wt)
|
||||
, labels = colnames(tab_wt)) +
|
||||
scale_y_continuous( limits = c(0, 5))
|
||||
, labels = colnames(tab_wt))
|
||||
p2
|
||||
# further customise
|
||||
|
||||
# further customise
|
||||
p3 = p2 +
|
||||
theme(legend.position = "none"
|
||||
, axis.text.x = element_text(size = 20
|
||||
, angle = 90)
|
||||
, axis.text.y = element_blank())
|
||||
theme(legend.position = "bottom"
|
||||
#, legend.title = element_blank()
|
||||
, legend.title = element_text("Amino acid properties", size = 20)
|
||||
, legend.text = element_text( size = 20)
|
||||
, axis.text.x = element_text(size = 20, angle = 90)
|
||||
, axis.text.y = element_blank()
|
||||
, axis.title.x = element_text(size = 22))+
|
||||
|
||||
labs(x= "Position")
|
||||
|
||||
p3
|
||||
|
||||
|
@ -202,11 +178,18 @@ p3
|
|||
suppressMessages( require(cowplot) )
|
||||
|
||||
plot_grid(p1, p3, ncol = 1, align = 'v') #+
|
||||
# background_grid(minor_mychisq = "xy"
|
||||
# , size.minor_mychisq = 1
|
||||
# , colour.minor_mychisq = "grey86")
|
||||
|
||||
|
||||
#colour scheme
|
||||
#https://rdrr.io/cran/ggseqlogo/src/R/col_schemes.r
|
||||
|
||||
cat("Output plot:", plot_logo_multiple_muts)
|
||||
|
||||
svg(plot_logo_multiple_muts, width = 32, height = 10)
|
||||
|
||||
OutPlot1 = cowplot::plot_grid(p1, p3
|
||||
, nrow = 2
|
||||
, align = "v"
|
||||
, rel_heights = c(3/4, 1/4))
|
||||
|
||||
print(OutPlot1)
|
||||
dev.off()
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
#!/usr/bin/env Rscript
|
||||
#########################################################
|
||||
# TASK: producing boxplots for dr and other muts
|
||||
# TASK: producing logoplot
|
||||
# from data and/or from sequence
|
||||
|
||||
#########################################################
|
||||
#=======================================================================
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue