updated figure for multi mut plot

This commit is contained in:
Tanushree Tunstall 2020-09-11 19:30:20 +01:00
parent 968b57105f
commit e1da853cf1
2 changed files with 112 additions and 128 deletions

View file

@ -1,177 +1,149 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: producing logo-type plot showing
# multiple muts per position coloured by aa property
#########################################################
#=======================================================================
# working dir and loading libraries
getwd()
#setwd("~/Documents/git/LSHTM_Y1_PNCA/combined_v3/logo_plot") # wor_mychisqk
setwd("~/git/LSHTM_Y1_PNCA/combined_v3/logo_plot") # thinkpad
#setwd("/Users/tanu/git/LSHTM_Y1_PNCA/combined_v3/logo_plot") # mac
setwd("~/git/LSHTM_analysis/scripts/plotting")
getwd()
#########################################################
# 1: Installing and loading required packages
#########################################################
source("Header_TT.R")
#library(ggplot2)
#library(data.table)
#library(dplyr)
source("../../Header_TT.R")
#===========
# input
#===========
source("combining_dfs_plotting.R")
#source("barplot_colour_function.R")
#===========
# output
#===========
#install.packages("ggseqlogo")
logo_multiple_muts = "logo_multiple_muts.svg"
plot_logo_multiple_muts = paste0(plotdir,"/", logo_multiple_muts)
library(ggseqlogo)
##########################################################################
########################################################################
# end of loading libraries and functions #
########################################################################
setwd("/home/tanu/git/LSHTM_analysis/plotting_test")
source("../scripts/plotting/combining_dfs_plotting.R")
# since we will be using df without NA, its best to delete the ones with NA
rm(merged_df2, merged_df3)
###########################
# 3: Data for_mychisq DUET plots
# you need merged_df3_comp
# since these have unique SNPs
###########################
#<<<<<<<<<<<<<<<<<<<<<<<<<
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT
my_df = merged_df3_comp
my_df = merged_df3 #try!
#<<<<<<<<<<<<<<<<<<<<<<<<<
my_df = merged_df3
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# clear excess variables
rm(merged_df2, merged_df2_comp, merged_df2_lig, merged_df2_comp_lig
, merged_df3_comp, merged_df3_comp_lig
, my_df_u, my_df_u_lig, merged_df3_lig)
colnames(my_df)
str(my_df)
rownames(my_df) = my_df$Mutationinfor_mychisqmation
#rownames(my_df) = my_df$mutation
c1 = unique(my_df$position) #96
nrow(my_df) #189
c1 = unique(my_df$position)
nrow(my_df)
#get freq count of positions so you can subset freq<1
require(data.table)
setDT(my_df)[, occurrence := .N, by = .(position)] #189, 36
# get freq count of positions so you can subset freq<1
#require(data.table)
setDT(my_df)[, mut_pos_occurrence := .N, by = .(position)] #189, 36
table(my_df$position); table(my_df$occurrence)
table(my_df$position)
table(my_df$mut_pos_occurrence)
max_mut = max(table(my_df$position))
# extract freq_pos>1
my_data_snp = my_df[my_df$mut_pos_occurrence!=1,]
u = unique(my_data_snp$position)
max_mult_mut = max(table(my_data_snp$position))
if (nrow(my_data_snp) == nrow(my_df) - table(my_df$mut_pos_occurrence)[[1]] ){
cat("PASS: positions with multiple muts extracted"
, "\nNo. of mutations:", nrow(my_data_snp)
, "\nNo. of positions:", length(u)
, "\nMax no. of muts at any position", max_mult_mut)
}else{
cat("FAIL: positions with multiple muts could NOT be extracted"
, "\nExpected:",nrow(my_df) - table(my_df$mut_pos_occurrence)[[1]]
, "\nGot:", nrow(my_data_snp) )
}
cat("\nNo. of sites with only 1 mutations:", table(my_df$mut_pos_occurrence)[[1]])
#extract freq_pos>1
my_data_snp = my_df[my_df$occurrence!=1,] #144, 36
u = unique(my_data_snp$position) #51
########################################################################
# end of data extraction and cleaning for_mychisq plots #
########################################################################
#########################################################
#Task: To generate a logo plot or_mychisq bar plot but coloured
#aa properties.
#step1: read mcsm file and or_mychisq file
#step2: plot wild type positions
#step3: plot mutants per position coloured by aa properties
#step4: make the size of the letters/bars prop to or_mychisq if you can!
#########################################################
##useful links
#https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
#https://omarwagih.github.io/ggseqlogo/
#https://kkdey.github.io/Logolas-pages/wor_mychisqkflow.html
#A new sequence logo plot to highlight enrichment and depletion.
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288878/
##very good: http://www.cbs.dtu.dk/biotools/Seq2Logo-2.0/
#############
#PLOTS: Bar plot with aa properties
#using gglogo
#useful links: https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
#############
#following example
require(ggplot2)
require(reshape2)
library(gglogo)
library(ggrepel)
#lmf <- melt(logodf, id.var='pos')
foo = my_data_snp[, c("position", "mutant_type","duet_scaled", "or_mychisq", "mut_prop_polarity", "mut_prop_water") ]
#144, 6
head(foo)
foo = foo[or_mychisqder(foo$position),]
head(foo)
#==============
# matrix for_mychisq mutant type
# frequency of mutant type by position
#==============
table(my_data_snp$mutant_type, my_data_snp$position)
tab = table(my_data_snp$mutant_type, my_data_snp$position)
class(tab)
# unclass to convert to matrix
tab = unclass(tab)
tab = as.matrix(tab, rownames = T)
#should be TRUE
is.matrix(tab)
tab_mt = table(my_data_snp$mutant_type, my_data_snp$position)
class(tab_mt)
rownames(tab) #aa
colnames(tab) #pos
# unclass to convert to matrix
tab_mt = unclass(tab_mt)
tab_mt = as.matrix(tab_mt, rownames = T)
#should be TRUE
is.matrix(tab_mt)
rownames(tab_mt) #aa
colnames(tab_mt) #pos
#**************
# Plot 1: mutant logo
#**************
# generate seq logo
p0 = ggseqlogo(tab
p0 = ggseqlogo(tab_mt
, method = 'custom'
, seq_type = 'aa'
#, col_scheme = "taylor_mychisq"
#, col_scheme = "chemistry2"
) +
, seq_type = 'aa') +
#ylab('my custom height') +
theme(axis.text.x = element_blank()) +
theme_logo()+
# scale_x_continuous(breaks=1:51, parse (text = colnames(tab)) )
scale_x_continuous(breaks = 1:ncol(tab)
, labels = colnames(tab))+
scale_y_continuous( breaks = 1:5
, limits = c(0, 6))
scale_x_continuous(breaks = 1:ncol(tab_mt)
, labels = colnames(tab_mt))+
scale_y_continuous( breaks = 1:max_mult_mut
, limits = c(0, max_mult_mut))
p0
# further customisation
p1 = p0 + theme(legend.position = "bottom"
p1 = p0 + theme(legend.position = "none"
, legend.title = element_blank()
, legend.text = element_text(size = 20)
, axis.text.x = element_text(size = 20, angle = 90)
, axis.text.y = element_text(size = 20, angle = 90))
, axis.text.y = element_blank())
p1
#==============
# matrix for_mychisq wild type
# matrix for wild type
# frequency of wild type by position
#==============
tab_wt = table(my_data_snp$wild_type, my_data_snp$position); tab_wt #17, 51
tab_wt = table(my_data_snp$wild_type, my_data_snp$position); tab_wt
tab_wt = unclass(tab_wt)
#remove wt duplicates
wt = my_data_snp[, c("position", "wild_type")] #144, 2
wt = wt[!duplicated(wt),]#51, 2
wt = my_data_snp[, c("position", "wild_type")]
wt = wt[!duplicated(wt),]
tab_wt = table(wt$wild_type, wt$position); tab_wt # should all be 1
rownames(tab_wt)
rownames(tab)
rownames(tab_wt)
#**************
# Plot 2: for_mychisq wild_type
# with custom x axis to reflect my aa positions
# Plot 2: wild_type logo
#**************
# sanity check: MUST BE TRUE
# for_mychisq the cor_mychisqrectnes of the x axis
identical(colnames(tab), colnames(tab_wt))
identical(ncol(tab), ncol(tab_wt))
identical(colnames(tab_mt), colnames(tab_wt))
identical(ncol(tab_mt), ncol(tab_wt))
p2 = ggseqlogo(tab_wt
, method = 'custom'
@ -184,16 +156,20 @@ p2 = ggseqlogo(tab_wt
, axis.text.y = element_blank()) +
theme_logo() +
scale_x_continuous(breaks = 1:ncol(tab_wt)
, labels = colnames(tab_wt)) +
scale_y_continuous( limits = c(0, 5))
, labels = colnames(tab_wt))
p2
# further customise
# further customise
p3 = p2 +
theme(legend.position = "none"
, axis.text.x = element_text(size = 20
, angle = 90)
, axis.text.y = element_blank())
theme(legend.position = "bottom"
#, legend.title = element_blank()
, legend.title = element_text("Amino acid properties", size = 20)
, legend.text = element_text( size = 20)
, axis.text.x = element_text(size = 20, angle = 90)
, axis.text.y = element_blank()
, axis.title.x = element_text(size = 22))+
labs(x= "Position")
p3
@ -202,11 +178,18 @@ p3
suppressMessages( require(cowplot) )
plot_grid(p1, p3, ncol = 1, align = 'v') #+
# background_grid(minor_mychisq = "xy"
# , size.minor_mychisq = 1
# , colour.minor_mychisq = "grey86")
#colour scheme
#https://rdrr.io/cran/ggseqlogo/src/R/col_schemes.r
cat("Output plot:", plot_logo_multiple_muts)
svg(plot_logo_multiple_muts, width = 32, height = 10)
OutPlot1 = cowplot::plot_grid(p1, p3
, nrow = 2
, align = "v"
, rel_heights = c(3/4, 1/4))
print(OutPlot1)
dev.off()

View file

@ -1,6 +1,7 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: producing boxplots for dr and other muts
# TASK: producing logoplot
# from data and/or from sequence
#########################################################
#=======================================================================