saving from my panino, made lineage dist plots
This commit is contained in:
parent
1efb534f0f
commit
e1b8e103ea
4 changed files with 12 additions and 501 deletions
|
@ -1,163 +0,0 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
#########################################################
|
||||
# TASK:
|
||||
|
||||
#########################################################
|
||||
#source("~/git/LSHTM_analysis/scripts/Header_TT.R")
|
||||
#require(data.table)
|
||||
#require(dplyr)
|
||||
|
||||
source("plotting_data.R")
|
||||
# should return
|
||||
#my_df
|
||||
#my_df_u
|
||||
#dup_muts
|
||||
|
||||
# cmd parse arguments
|
||||
#require('getopt', quietly = TRUE)
|
||||
#========================================================
|
||||
|
||||
|
||||
#========================================================
|
||||
# Read file: call script for combining df for PS
|
||||
|
||||
#source("../combining_two_df.R")
|
||||
|
||||
#========================================================
|
||||
|
||||
# plotting_data.R imports all the dir names, etc
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
out_filename_mean_stability = paste0(tolower(gene), "_mean_stability.csv")
|
||||
outfile_mean_stability = paste0(outdir, "/", out_filename_mean_stability)
|
||||
print(paste0("Output file:", outfile_mean_stability))
|
||||
|
||||
#%%===============================================================
|
||||
|
||||
#================
|
||||
# Data for plots
|
||||
#================
|
||||
# REASSIGNMENT as necessary
|
||||
df = my_df_u
|
||||
rm(my_df)
|
||||
|
||||
###########################
|
||||
# Data for bfactor figure
|
||||
# PS (duet) average
|
||||
# Ligand affinity average
|
||||
###########################
|
||||
head(df$position); head(df$mutationinformation)
|
||||
head(df$duet_stability_change)
|
||||
|
||||
# order data frame
|
||||
#df = df[order(df$position),] #already done
|
||||
#head(df$position); head(df$mutationinformation)
|
||||
#head(df$duet_stability_change)
|
||||
|
||||
#***********
|
||||
# PS(duet): average by position and then scale b/w -1 and 1
|
||||
# column to average: duet_stability_change (NOT scaled!)
|
||||
#***********
|
||||
mean_duet_by_position <- df %>%
|
||||
group_by(position) %>%
|
||||
summarize(averaged_duet = mean(duet_stability_change))
|
||||
|
||||
# scale b/w -1 and 1
|
||||
duet_min = min(mean_duet_by_position['averaged_duet'])
|
||||
duet_max = max(mean_duet_by_position['averaged_duet'])
|
||||
|
||||
# scale the averaged_duet values
|
||||
mean_duet_by_position['averaged_duet_scaled'] = lapply(mean_duet_by_position['averaged_duet']
|
||||
, function(x) ifelse(x < 0, x/abs(duet_min), x/duet_max))
|
||||
|
||||
cat(paste0('Average duet scores:\n', head(mean_duet_by_position['averaged_duet'])
|
||||
, '\n---------------------------------------------------------------'
|
||||
, '\nScaled duet scores:\n', head(mean_duet_by_position['averaged_duet_scaled'])))
|
||||
|
||||
# sanity checks
|
||||
l_bound_duet = min(mean_duet_by_position['averaged_duet_scaled'])
|
||||
u_bound_duet = max(mean_duet_by_position['averaged_duet_scaled'])
|
||||
|
||||
if ( (l_bound_duet == -1) && (u_bound_duet == 1) ){
|
||||
cat(paste0("PASS: duet scores averaged by position and then scaled"
|
||||
, "\nmin averaged duet: ", l_bound_duet
|
||||
, "\nmax averaged duet: ", u_bound_duet))
|
||||
}else{
|
||||
cat(paste0("FAIL: avergaed duet scores could not be scaled b/w -1 and 1"
|
||||
, "\nmin averaged duet: ", l_bound_duet
|
||||
, "\nmax averaged duet: ", u_bound_duet))
|
||||
quit()
|
||||
}
|
||||
|
||||
#***********
|
||||
# Lig: average by position and then scale b/w -1 and 1
|
||||
# column: ligand_affinity_change (NOT scaled!)
|
||||
#***********
|
||||
mean_affinity_by_position <- df %>%
|
||||
group_by(position) %>%
|
||||
summarize(averaged_affinity = mean(ligand_affinity_change))
|
||||
|
||||
# scale b/w -1 and 1
|
||||
affinity_min = min(mean_affinity_by_position['averaged_affinity'])
|
||||
affinity_max = max(mean_affinity_by_position['averaged_affinity'])
|
||||
|
||||
# scale the averaged_affinity values
|
||||
mean_affinity_by_position['averaged_affinity_scaled'] = lapply(mean_affinity_by_position['averaged_affinity']
|
||||
, function(x) ifelse(x < 0, x/abs(affinity_min), x/affinity_max))
|
||||
|
||||
cat(paste0('Average affinity scores:\n', head(mean_affinity_by_position['averaged_affinity'])
|
||||
, '\n---------------------------------------------------------------'
|
||||
, '\nScaled affinity scores:\n', head(mean_affinity_by_position['averaged_affinity_scaled'])))
|
||||
|
||||
# sanity checks
|
||||
l_bound_affinity = min(mean_affinity_by_position['averaged_affinity_scaled'])
|
||||
u_bound_affinity = max(mean_affinity_by_position['averaged_affinity_scaled'])
|
||||
|
||||
if ( (l_bound_affinity == -1) && (u_bound_affinity == 1) ){
|
||||
cat(paste0("PASS: affinity scores averaged by position and then scaled"
|
||||
, "\nmin averaged affintiy: ", l_bound_affinity
|
||||
, "\nmax averaged affintiy: ", u_bound_affinity))
|
||||
}else{
|
||||
cat(paste0("FAIL: avergaed affinity scores could not be scaled b/w -1 and 1"
|
||||
, "\nmin averaged affintiy: ", l_bound_affinity
|
||||
, "\nmax averaged affintiy: ", u_bound_affinity))
|
||||
quit()
|
||||
}
|
||||
|
||||
#***********
|
||||
# merge: mean_duet_by_position and mean_affinity_by_position
|
||||
#***********
|
||||
common_cols = intersect(colnames(mean_duet_by_position), colnames(mean_affinity_by_position))
|
||||
|
||||
if (dim(mean_duet_by_position) && dim(mean_affinity_by_position)){
|
||||
print(paste0("PASS: dim's match, mering dfs by column :", common_cols))
|
||||
#combined = as.data.frame(cbind(mean_duet_by_position, mean_affinity_by_position ))
|
||||
combined_df = as.data.frame(merge(mean_duet_by_position
|
||||
, mean_affinity_by_position
|
||||
, by = common_cols
|
||||
, all = T))
|
||||
|
||||
cat(paste0("\nnrows combined_df:", nrow(combined_df)
|
||||
, "\nnrows combined_df:", ncol(combined_df)))
|
||||
}else{
|
||||
cat(paste0("FAIL: dim's mismatch, aborting cbind!"
|
||||
, "\nnrows df1:", nrow(mean_duet_by_position)
|
||||
, "\nnrows df2:", nrow(mean_affinity_by_position)))
|
||||
quit()
|
||||
}
|
||||
#%%============================================================
|
||||
# output
|
||||
write.csv(combined_df, outfile_mean_stability
|
||||
, row.names = F)
|
||||
cat("Finished writing file:\n"
|
||||
, outfile_mean_stability
|
||||
, "\nNo. of rows:", nrow(combined_df)
|
||||
, "\nNo. of cols:", ncol(combined_df))
|
||||
|
||||
# end of script
|
||||
#===============================================================
|
|
@ -1,332 +0,0 @@
|
|||
#!/usr/bin/env Rscript
|
||||
|
||||
#########################################################
|
||||
# TASK: Replace B-factors in the pdb file with the mean
|
||||
# normalised stability values.
|
||||
|
||||
# read pdb file
|
||||
# make two copies so you can replace B factors for 1)duet
|
||||
# 2)affinity values and output 2 separate pdbs for
|
||||
# rendering on chimera
|
||||
|
||||
# read mcsm mean stability value files
|
||||
# extract the respective mean values and assign to the
|
||||
# b-factor column within their respective pdbs
|
||||
|
||||
# generate some distribution plots for inspection
|
||||
|
||||
#########################################################
|
||||
# working dir and loading libraries
|
||||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
||||
cat(c(getwd(),"\n"))
|
||||
|
||||
#source("~/git/LSHTM_analysis/scripts/Header_TT.R")
|
||||
library(bio3d)
|
||||
require("getopt", quietly = TRUE) # cmd parse arguments
|
||||
#========================================================
|
||||
#drug = "pyrazinamide"
|
||||
#gene = "pncA"
|
||||
|
||||
# command line args
|
||||
spec = matrix(c(
|
||||
"drug" , "d", 1, "character",
|
||||
"gene" , "g", 1, "character"
|
||||
), byrow = TRUE, ncol = 4)
|
||||
|
||||
opt = getopt(spec)
|
||||
|
||||
drug = opt$drug
|
||||
gene = opt$gene
|
||||
|
||||
if(is.null(drug)|is.null(gene)) {
|
||||
stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
|
||||
}
|
||||
#========================================================
|
||||
gene_match = paste0(gene,"_p.")
|
||||
cat(gene_match)
|
||||
|
||||
#=============
|
||||
# directories
|
||||
#=============
|
||||
datadir = paste0("~/git/Data")
|
||||
indir = paste0(datadir, "/", drug, "/input")
|
||||
outdir = paste0("~/git/Data", "/", drug, "/output")
|
||||
#outdir_plots = paste0("~/git/Data", "/", drug, "/output/plots")
|
||||
outdir_plots = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
|
||||
|
||||
#======
|
||||
# input
|
||||
#======
|
||||
in_filename_pdb = paste0(tolower(gene), "_complex.pdb")
|
||||
infile_pdb = paste0(indir, "/", in_filename_pdb)
|
||||
cat(paste0("Input file:", infile_pdb) )
|
||||
|
||||
#in_filename_mean_stability = paste0(tolower(gene), "_mean_stability.csv")
|
||||
#infile_mean_stability = paste0(outdir, "/", in_filename_mean_stability)
|
||||
|
||||
in_filename_mean_stability = paste0(tolower(gene), "_mean_ens_stab_aff.csv")
|
||||
infile_mean_stability = paste0(outdir_plots, "/", in_filename_mean_stability)
|
||||
|
||||
cat(paste0("Input file:", infile_mean_stability) )
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
#out_filename_duet_mspdb = paste0(tolower(gene), "_complex_bduet_ms.pdb")
|
||||
out_filename_duet_mspdb = paste0(tolower(gene), "_complex_b_stab_ms.pdb")
|
||||
outfile_duet_mspdb = paste0(outdir_plots, "/", out_filename_duet_mspdb)
|
||||
print(paste0("Output file:", outfile_duet_mspdb))
|
||||
|
||||
out_filename_lig_mspdb = paste0(tolower(gene), "_complex_blig_ms.pdb")
|
||||
outfile_lig_mspdb = paste0(outdir_plots, "/", out_filename_lig_mspdb)
|
||||
print(paste0("Output file:", outfile_lig_mspdb))
|
||||
|
||||
#%%===============================================================
|
||||
#NOTE: duet here refers to the ensemble stability values
|
||||
|
||||
###########################
|
||||
# Read file: average stability values
|
||||
# or mcsm_normalised file
|
||||
###########################
|
||||
my_df <- read.csv(infile_mean_stability, header = T)
|
||||
str(my_df)
|
||||
|
||||
#############
|
||||
# Read pdb
|
||||
#############
|
||||
# list of 8
|
||||
my_pdb = read.pdb(infile_pdb
|
||||
, maxlines = -1
|
||||
, multi = FALSE
|
||||
, rm.insert = FALSE
|
||||
, rm.alt = TRUE
|
||||
, ATOM.only = FALSE
|
||||
, hex = FALSE
|
||||
, verbose = TRUE)
|
||||
|
||||
rm(in_filename_mean_stability, in_filename_pdb)
|
||||
|
||||
# assign separately for duet and ligand
|
||||
my_pdb_duet = my_pdb
|
||||
my_pdb_lig = my_pdb
|
||||
|
||||
#=========================================================
|
||||
# Replacing B factor with mean stability scores
|
||||
# within the respective dfs
|
||||
#==========================================================
|
||||
# extract atom list into a variable
|
||||
# since in the list this corresponds to data frame, variable will be a df
|
||||
#df_duet = my_pdb_duet[[1]]
|
||||
df_duet= my_pdb_duet[['atom']]
|
||||
df_lig = my_pdb_lig[['atom']]
|
||||
|
||||
# make a copy: required for downstream sanity checks
|
||||
d2_duet = df_duet
|
||||
d2_lig = df_lig
|
||||
|
||||
# sanity checks: B factor
|
||||
max(df_duet$b); min(df_duet$b)
|
||||
max(df_lig$b); min(df_lig$b)
|
||||
|
||||
#*******************************************
|
||||
# histograms and density plots for inspection
|
||||
# 1: original B-factors
|
||||
# 2: original mean stability values
|
||||
# 3: replaced B-factors with mean stability values
|
||||
#*********************************************
|
||||
# Set the margin on all sides
|
||||
par(oma = c(3,2,3,0)
|
||||
, mar = c(1,3,5,2)
|
||||
#, mfrow = c(3,2)
|
||||
, mfrow = c(3,4))
|
||||
|
||||
#=============
|
||||
# Row 1 plots: original B-factors
|
||||
# duet and affinity
|
||||
#=============
|
||||
hist(df_duet$b
|
||||
, xlab = ""
|
||||
, main = "Bfactor stability")
|
||||
|
||||
plot(density(df_duet$b)
|
||||
, xlab = ""
|
||||
, main = "Bfactor stability")
|
||||
|
||||
|
||||
hist(df_lig$b
|
||||
, xlab = ""
|
||||
, main = "Bfactor affinity")
|
||||
|
||||
plot(density(df_lig$b)
|
||||
, xlab = ""
|
||||
, main = "Bfactor affinity")
|
||||
|
||||
#=============
|
||||
# Row 2 plots: original mean stability values
|
||||
# duet and affinity
|
||||
#=============
|
||||
|
||||
#hist(my_df$averaged_duet
|
||||
hist(my_df$avg_ens_stability_scaled
|
||||
, xlab = ""
|
||||
, main = "mean stability values")
|
||||
|
||||
#plot(density(my_df$averaged_duet)
|
||||
plot(density(my_df$avg_ens_stability_scaled)
|
||||
, xlab = ""
|
||||
, main = "mean stability values")
|
||||
|
||||
#hist(my_df$averaged_affinity
|
||||
hist(my_df$avg_ens_affinity_scaled
|
||||
, xlab = ""
|
||||
, main = "mean affinity values")
|
||||
|
||||
#plot(density(my_df$averaged_affinity)
|
||||
plot(density(my_df$avg_ens_affinity_scaled)
|
||||
, xlab = ""
|
||||
, main = "mean affinity values")
|
||||
|
||||
#==============
|
||||
# Row 3 plots: replaced B-factors with mean stability values
|
||||
# After actual replacement in the b factor column
|
||||
#===============
|
||||
################################################################
|
||||
#=========
|
||||
# step 0_P1: DONT RUN once you have double checked the matched output
|
||||
#=========
|
||||
# sanity check: match and assign to a separate column to double check
|
||||
# colnames(my_df)
|
||||
# df_duet$duet_scaled = my_df$averge_duet_scaled[match(df_duet$resno, my_df$position)]
|
||||
|
||||
#=========
|
||||
# step 1_P1
|
||||
#=========
|
||||
# Be brave and replace in place now (don"t run sanity check)
|
||||
# this makes all the B-factor values in the non-matched positions as NA
|
||||
|
||||
#df_duet$b = my_df$averaged_duet_scaled[match(df_duet$resno, my_df$position)]
|
||||
#df_lig$b = my_df$averaged_affinity_scaled[match(df_lig$resno, my_df$position)]
|
||||
|
||||
df_duet$b = my_df$avg_ens_stability_scaled[match(df_duet$resno, my_df$position)]
|
||||
df_lig$b = my_df$avg_ens_affinity_scaled[match(df_lig$resno, my_df$position)]
|
||||
|
||||
#=========
|
||||
# step 2_P1
|
||||
#=========
|
||||
# count NA in Bfactor
|
||||
b_na_duet = sum(is.na(df_duet$b)) ; b_na_duet
|
||||
b_na_lig = sum(is.na(df_lig$b)) ; b_na_lig
|
||||
|
||||
# count number of 0"s in Bactor
|
||||
sum(df_duet$b == 0)
|
||||
sum(df_lig$b == 0)
|
||||
|
||||
# replace all NA in b factor with 0
|
||||
na_rep = 2
|
||||
df_duet$b[is.na(df_duet$b)] = na_rep
|
||||
df_lig$b[is.na(df_lig$b)] = na_rep
|
||||
|
||||
# # sanity check: should be 0 and True
|
||||
# # duet and lig
|
||||
# if ( (sum(df_duet$b == na_rep) == b_na_duet) && (sum(df_lig$b == na_rep) == b_na_lig) ) {
|
||||
# print ("PASS: NA's replaced with 0s successfully in df_duet and df_lig")
|
||||
# } else {
|
||||
# print("FAIL: NA replacement in df_duet NOT successful")
|
||||
# quit()
|
||||
# }
|
||||
#
|
||||
# max(df_duet$b); min(df_duet$b)
|
||||
#
|
||||
# # sanity checks: should be True
|
||||
# if( (max(df_duet$b) == max(my_df$avg_ens_stability_scaled)) & (min(df_duet$b) == min(my_df$avg_ens_stability_scaled)) ){
|
||||
# print("PASS: B-factors replaced correctly in df_duet")
|
||||
# } else {
|
||||
# print ("FAIL: To replace B-factors in df_duet")
|
||||
# quit()
|
||||
# }
|
||||
|
||||
# if( (max(df_lig$b) == max(my_df$avg_ens_affinity_scaled)) & (min(df_lig$b) == min(my_df$avg_ens_affinity_scaled)) ){
|
||||
# print("PASS: B-factors replaced correctly in df_lig")
|
||||
# } else {
|
||||
# print ("FAIL: To replace B-factors in df_lig")
|
||||
# quit()
|
||||
# }
|
||||
|
||||
#=========
|
||||
# step 3_P1
|
||||
#=========
|
||||
# sanity check: dim should be same before reassignment
|
||||
if ( (dim(df_duet)[1] == dim(d2_duet)[1]) & (dim(df_lig)[1] == dim(d2_lig)[1]) &
|
||||
(dim(df_duet)[2] == dim(d2_duet)[2]) & (dim(df_lig)[2] == dim(d2_lig)[2])
|
||||
){
|
||||
print("PASS: Dims of both dfs as expected")
|
||||
} else {
|
||||
print ("FAIL: Dims mismatch")
|
||||
quit()}
|
||||
|
||||
#=========
|
||||
# step 4_P1:
|
||||
# VERY important
|
||||
#=========
|
||||
# assign it back to the pdb file
|
||||
my_pdb_duet[['atom']] = df_duet
|
||||
max(df_duet$b); min(df_duet$b)
|
||||
table(df_duet$b)
|
||||
sum(is.na(df_duet$b))
|
||||
|
||||
my_pdb_lig[['atom']] = df_lig
|
||||
max(df_lig$b); min(df_lig$b)
|
||||
|
||||
#=========
|
||||
# step 5_P1
|
||||
#=========
|
||||
cat(paste0("output file duet mean stability pdb:", outfile_duet_mspdb))
|
||||
write.pdb(my_pdb_duet, outfile_duet_mspdb)
|
||||
|
||||
cat(paste0("output file ligand mean stability pdb:", outfile_lig_mspdb))
|
||||
write.pdb(my_pdb_lig, outfile_lig_mspdb)
|
||||
|
||||
#============================
|
||||
# Add the 3rd histogram and density plots for comparisons
|
||||
#============================
|
||||
# Plots continued...
|
||||
# Row 3 plots: hist and density of replaced B-factors with stability values
|
||||
hist(df_duet$b
|
||||
, xlab = ""
|
||||
, main = "repalcedB duet")
|
||||
|
||||
plot(density(df_duet$b)
|
||||
, xlab = ""
|
||||
, main = "replacedB duet")
|
||||
|
||||
|
||||
hist(df_lig$b
|
||||
, xlab = ""
|
||||
, main = "repalcedB affinity")
|
||||
|
||||
plot(density(df_lig$b)
|
||||
, xlab = ""
|
||||
, main = "replacedB affinity")
|
||||
|
||||
# graph titles
|
||||
mtext(text = "Frequency"
|
||||
, side = 2
|
||||
, line = 0
|
||||
, outer = TRUE)
|
||||
|
||||
mtext(text = paste0(tolower(gene), ": Stability Distribution")
|
||||
, side = 3
|
||||
, line = 0
|
||||
, outer = TRUE)
|
||||
#============================================
|
||||
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
# NOTE: This replaced B-factor distribution has the same
|
||||
# x-axis as the PredAff normalised values, but the distribution
|
||||
# is affected since 0 is overinflated/or hs an additional blip because
|
||||
# of the positions not associated with resistance. This is because all the positions
|
||||
# where there are no SNPs have been assigned 0???
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue